Problems06
16 Pages

Problems06

Course Number: PHYS 1610, Spring 2008

College/University: Auburn

Word Count: 6072

Rating:

Document Preview

Wq2Chapter 6 Problems 1, 2, 3 = straightforward, intermediate, challenging Section 6.1 Newton's Second Law Applied to Uniform Circular Motion 1. A light string can support a stationary hanging load of 25.0 kg before breaking. A 3.00-kg object attached to the string rotates on a horizontal, frictionless table in a circle of radius 0.800 m, while the other end of the string is held fixed. What range of speeds can...

Unformatted Document Excerpt
Coursehero >> Alabama >> Auburn >> PHYS 1610

Course Hero has millions of student submitted documents similar to the one
below including study guides, practice problems, reference materials, practice exams, textbook help and tutor support.

Course Hero has millions of student submitted documents similar to the one below including study guides, practice problems, reference materials, practice exams, textbook help and tutor support.

6 Wq2Chapter Problems 1, 2, 3 = straightforward, intermediate, challenging Section 6.1 Newton's Second Law Applied to Uniform Circular Motion 1. A light string can support a stationary hanging load of 25.0 kg before breaking. A 3.00-kg object attached to the string rotates on a horizontal, frictionless table in a circle of radius 0.800 m, while the other end of the string is held fixed. What range of speeds can the object have before the string breaks? 2. A curve in a road forms part of a horizontal circle. As a car goes around it at constant speed 14.0 m/s, the total force on the driver has magnitude 130 N. What is the vector total force on the driver if the speed is 18.0 m/s instead? 3. In the Bohr model of the hydrogen atom, the speed of the electron is approximately 2.20 106 m/s. Find (a) the force acting on the electron as it revolves in a circular orbit of radius 0.530 1010 m and (b) the centripetal acceleration of the electron. 4. In a cyclotron (one type of particle accelerator), a deuteron (of atomic mass 2.00 u) reaches a final speed of 10.0% of the speed of light while moving in a circular path of radius 0.480 m. The deuteron is maintained in the circular path by a magnetic force. What magnitude of force is required? 5. A coin placed 30.0 cm from the center of a rotating, horizontal turntable slips when its speed is 50.0 cm/s. (a) What force causes the centripetal acceleration when the coin is stationary relative to the turntable? (b) What is the coefficient of static friction between coin and turntable? 6. Whenever two Apollo astronauts were on the surface of the Moon, a third astronaut orbited the Moon. Assume the orbit to be circular and 100 km above the surface of the Moon, where the acceleration due to gravity is 1.52 m/s2. The radius of the Moon is 1.70 106 m. Determine (a) the astronaut's orbital speed, and (b) the period of the orbit. 7. A crate of eggs is located in the middle of the flat bed of a pickup truck as the truck negotiates an unbanked curve in the road. The curve may be regarded as an arc of a circle of radius 35.0 m. If the coefficient of static friction between crate and truck is 0.600, how fast can the truck be moving without the crate sliding? 8. The cornering performance of an automobile is evaluated on a skidpad, where the maximum speed that a car can maintain around a circular path on a dry, flat surface is measured. Then the centripetal acceleration, also called the lateral acceleration, is calculated as a multiple of the free-fall acceleration g. The main factors affecting the performance are the tire characteristics and the suspension system of the car. A Dodge Viper GTS can negotiate a skidpad of radius 61.0 m at 86.5 km/h. Calculate its maximum lateral acceleration. 9. Consider a conical pendulum with an 80.0-kg bob on a 10.0-m wire making an angle of 5.00 with the vertical (Fig. P6.9). Determine (a) the horizontal and vertical components of the force exerted by the wire on the pendulum and (b) the centripetal acceleration of the bob. (c) its average acceleration during the 36.0-s interval. Figure P6.10 11. A 4.00-kg object is attached to a vertical rod by two strings, as in Figure P6.11. The object rotates in a horizontal circle at constant speed 6.00 m/s. Find the tension in (a) the upper string and (b) the lower string. Figure P6.9 10. A car initially traveling eastward turns north by traveling in a circular path at uniform speed as in Figure P6.10. The length of the arc ABC is 235 m, and the car completes the turn in 36.0 s. (a) What is the acceleration when the car is at B located at an angle of 35.0 ? Express your answer in j i terms of the unit vectors ^ and ^ . Determine (b) the car's average speed and Figure P6.11 12. Casting of molten metal is important in many industrial processes. Centrifugal casting is used for manufacturing pipes, bearings and many other structures. A variety of sophisticated techniques have been invented, but the basic idea is as illustrated in Figure P6.12. A cylindrical enclosure is rotated rapidly and steadily about a horizontal axis. Molten metal is poured into the rotating cylinder and then cooled, forming the finished product. Turning the cylinder at a high rotation rate forces the solidifying metal strongly to the outside. Any bubbles are displaced toward the axis, so unwanted voids will not be present in the casting. Sometimes it is desirable to form a composite casting, such as for a bearing. Here a strong steel outer surface is poured, and then inside it a lining of special low-friction metal. In some applications a very strong metal is given a coating of corrosion-resistant metal. Centrifugal casting results in strong bonding between the layers. Suppose that a copper sleeve of inner radius 2.10 cm and outer radius 2.20 cm is to be cast. To eliminate bubbles and give high structural integrity, the centripetal acceleration of each bit of metal should be 100g. What rate of rotation is required? State the answer in revolutions per minute. Section 6.2 Nonuniform Circular Motion 13. A 40.0-kg child swings in a swing supported by two chains, each 3.00 m long. If the tension in each chain at the lowest point is 350 N, find (a) the child's speed at the lowest point and (b) the force exerted by the seat on the child at the lowest point. (Neglect the mass of the seat.) 14. A child of mass m swings in a swing supported by two chains, each of length R. If the tension in each chain at the lowest point is T, find (a) the child's speed at the lowest point and (b) the force exerted by the seat on the child at the lowest point. (Neglect the mass of the seat.) 15. Tarzan (m = 85.0 kg) tries to cross a river by swinging from a vine. The vine is 10.0 m long, and his speed at the bottom of the swing (as he just clears the water) will be 8.00 m/s. Tarzan doesn't know that the vine has a breaking strength of 1 000 N. Does he make it safely across the river? 16. A hawk flies in a horizontal arc of radius 12.0 m at a constant speed of 4.00 m/s. (a) Find its centripetal acceleration. (b) It continues to fly along the same horizontal arc but increases its speed at the rate of 1.20 m/s2. Find the acceleration (magnitude and direction) under these conditions. 17. A pail of water is rotated in a vertical circle of radius 1.00 m. What is the minimum speed of the pail at the top of the circle if no water is to spill out? 18. A 0.400-kg object is swung in a vertical circular path on a string 0.500 m long. If its speed is 4.00 m/s at the top of the circle, what is the tension in the string there? 19. A roller coaster car (Fig. P6.19) has a mass of 500 kg when fully loaded with passengers. (a) If the vehicle has a speed of 20.0 m/s at point A, what is the force exerted by the track on the car at this point? (b) What is the maximum speed the vehicle can have at B and still remain on the track? car plus the riders is M, what force does the rail exert on the car at the top? (c) Suppose the roller coaster had a circular loop of radius 20.0 m. If the cars have the same speed, 13.0 m/s at the top, what is the centripetal acceleration at the top? Comment on the normal force at the top in this situation. Section 6.3 Motion in Accelerated Frames 21. An object of mass 5.00 kg, attached to a spring scale, rests on a frictionless, horizontal surface as in Figure P6.21. The spring scale, attached to the front end of a boxcar, has a constant reading of 18.0 N when the car is in motion. (a) If the spring scale reads zero when the car is at rest, determine the acceleration of the car. (b) What constant reading will the spring scale show if the car moves with constant velocity? (c) Describe the forces on the object as observed by someone in the car and by someone at rest outside the car. Figure P6.19 20. A roller coaster at the Six Flags Great America amusement park in Gurnee, Illinois, incorporates some clever design technology and some basic physics. Each vertical loop, instead of being circular, is shaped like a teardrop. The cars ride on the inside of the loop at the top, and the speeds are high enough to ensure that the cars remain on the track. The biggest loop is 40.0 m high, with a maximum speed of 31.0 m/s (nearly 70 mi/h) at the bottom. Suppose the speed at the top is 13.0 m/s and the corresponding centripetal acceleration is 2g. (a) What is the radius of the arc of the teardrop at the top? (b) If the total mass of a Figure P6.21 22. If the coefficient of static friction between your coffee cup and the horizontal dashboard of your car is s = 0.800, how fast can you drive on a horizontal roadway around a right turn of radius 30.0 m before the cup starts to slide? If you go too fast, in what direction will the cup slide relative to the dashboard? 23. A 0.500-kg object is suspended from the ceiling of an accelerating boxcar as in Figure 6.13. If a = 3.00 m/s2, find (a) the angle that the string makes with the vertical and (b) the tension in the string. 24. A small container of water is placed on a carousel inside a microwave oven, at a radius of 12.0 cm from the center. The turntable rotates steadily, turning through one revolution in each 7.25 s. What angle does the water surface make with the horizontal? 25. A person stands on a scale in an elevator. As the elevator starts, the scale has a constant reading of 591 N. As the elevator later stops, the scale reading is 391 N. Assume the magnitude of the acceleration is the same during starting and stopping, and determine (a) the weight of the person, (b) the person's mass, and (c) the acceleration of the elevator. 26. The Earth rotates about its axis with a period of 24.0 h. Imagine that the rotational speed can be increased. If an object at the equator is to have zero apparent weight, (a) what must the new period be? (b) By what factor would the speed of the object be increased when the planet is rotating at the higher speed? Note that the apparent weight of the object becomes zero when the normal force exerted on it is zero. 27. A small block is at rest on the floor at the front of a railroad boxcar that has length . The coefficient of kinetic friction between the floor of the car and the block is k. The car, originally at rest, begins to move with acceleration a. The block slides back horizontally until it hits the back wall of the car. At that moment, what is its speed (a) relative to the car? (b) relative to Earth? 28. A student stands in an elevator that is continuously accelerating upward with acceleration a. Her backpack is sitting on the floor next to the wall. The width of the elevator car is L. The student gives her backpack a quick kick at t = 0, imparting to it speed v, and making it slide across the elevator floor. At time t, the backpack hits the opposite wall. Find the coefficient of kinetic friction k between the backpack and the elevator floor. 29. A child on vacation wakes up. She is lying on her back. The tension in the muscles on both sides of her neck is 55.0 N as she raises her head to look past her toes and out the motel window. Finally it is not raining! Ten minutes later she is screaming feet first down a water slide at terminal speed 5.70 m/s, riding high on the outside wall of a horizontal curve of radius 2.40 m (Figure P6.29). She raises her head to look forward past her toes; find the tension in the muscles on both sides of her neck. cone will the bit of fruit start to slide up the wall of the cone at that point, after being temporarily stuck? Figure P6.29 30. With one popular design, a household juice machine is a conical, perforated stainless steel basket 3.30 cm high with a closed bottom of diameter 8.00 cm and open top of diameter 13.70 cm, that spins at 20 000 revolutions per minute about a vertical axis (Figure P6.30). Solid pieces of fruit or vegetables are chopped into granules by cutters on the bottom of the spinning cone. Then the fruit or vegetable granules rapidly make their way to the sloping surface where the juice is extracted to the outside of the cone through the mesh perforations. The dry pulp spirals upward along the slope to be ejected from the top of the cone. The juice is collected in an enclosure immediately surrounding the sloped surface of the cone. (a) What centripetal acceleration does a bit of fruit experience when it is spinning with the basket at a point midway between the top and bottom? Express the answer as a multiple of g. (b) Observe that the weight of the fruit is a negligible force. What is the normal force on 2.00 g of fruit at that point? (c) If the effective coefficient of kinetic friction between the fruit and the cone is 0.600, with what acceleration relative to the Figure P6.30 31. A plumb bob does not hang exactly along a line directed to the center of the Earth's rotation. How much does the plumb bob deviate from a radial line at 35.0 north latitude? Assume that the Earth is spherical. Section 6.4 Motion in the Presence of Resistive Forces 32. A sky diver of mass 80.0 kg jumps from a slow-moving aircraft and reaches a terminal speed of 50.0 m/s. (a) What is the acceleration of the sky diver when her speed is 30.0 m/s? What is the drag force on the diver when her speed is (b) 50.0 m/s? (c) 30.0 m/s? 33. A small piece of Styrofoam packing material is dropped from a height of 2.00 m above the ground. Until it reaches terminal speed, the magnitude of its acceleration is given by a = g bv. After falling 0.500 m, the Styrofoam effectively reaches terminal speed, and then takes 5.00 s more to reach the ground. (a) What is the value of the constant b? (b) What is the acceleration at t = 0? (c) What is the acceleration when the speed is 0.150 m/s? 34. (a) Estimate the terminal speed of a wooden sphere (density 0.830 g/cm3) falling through air if its radius is 8.00 cm and its drag coefficient is 0.500. (b) From what height would a freely falling object reach this speed in the absence of air resistance? 35. Calculate the force required to pull a copper ball of radius 2.00 cm upward through a fluid at the constant speed 9.00 cm/s. Take the drag force to be proportional to the speed, with proportionality constant 0.950 kg/s. Ignore the buoyant force. 36. A fire helicopter carries a 620-kg bucket at the end of a cable 20.0 m long as in Figure P6.36. As the helicopter flies to a fire at a constant speed of 40.0 m/s, the cable makes an angle of 40.0 with respect to the vertical. The bucket presents a crosssectional area of 3.80 m2 in a plane perpendicular to the air moving past it. Determine the drag coefficient assuming that the resistive force is proportional to the square of the bucket's speed. Figure P6.36 37. A small, spherical bead of mass 3.00 g is released from rest at t = 0 in a bottle of liquid shampoo. The terminal speed is observed to be T = 2.00 cm/s. Find (a) the value of the constant b in Equation 6.2, (b) the time at which the bead reaches 0.632 T , and (c) the value of the resistive force when the bead reaches terminal speed. 38. The mass of a sports car is 1 200 kg. The shape of the body is such that the aerodynamic drag coefficient is 0.250 and the frontal area is 2.20 m2. Neglecting all other sources of friction, calculate the initial acceleration of the car if it has been traveling at 100 km/h and is now shifted into neutral and allowed to coast. 39. A motorboat cuts its engine when its speed is 10.0 m/s and coasts to rest. The equation describing the motion of the motorboat during this period is v = viect, where v is the speed at time t, vi is the initial speed, and c is a constant. At t = 20.0 s, the speed is 5.00 m/s. (a) Find the constant c. (b) What is the speed at t = 40.0 s? (c) Differentiate the expression for v(t) and thus show that the acceleration of the boat is proportional to the speed at any time. 40. Consider an object on which the net force is a resistive force proportional to the square of its speed. For example, assume that the resistive force acting on a speed skater is f = kmv2, where k is a constant and m is the skater's mass. The skater crosses the finish line of a straight-line race with speed v0 and then slows down by coasting on his skates. Show that the skater's speed at any time t after crossing the finish line is v(t) = v0/(1 + ktv0). This problem also provides the background for the two following problems. 41. (a) Use the result of Problem 40 to find the position x as a function of time for an object of mass m, located at x = 0 and depending on when the operator pulls the trigger. Because the ball is subject to a drag force due to air, it slows as it travels 18.3 m toward the plate. Use the result of Problem 41(b) to find how much its speed decreases. Suppose the ball leaves the pitcher's hand at 90.0 mi/h = 40.2 m/s. Ignore its vertical motion. Use data on baseballs from Example 6.13 to determine the speed of the pitch when it crosses the plate. 43. You can feel a force of air drag on your hand if you stretch your arm out of the open window of a speeding car. [Note: Do not endanger yourself.] What is the order of magnitude of this force? In your solution state the quantities measure you or estimate and their values. Section 6.5 Numerical Modeling in Particle Dynamics 44. A 3.00-g leaf is dropped from a height of 2.00 m above the ground. Assume the net downward force exerted on the leaf is F = mg bv, where the drag factor is b = 0.030 0 kg/s. (a) Calculate the terminal speed of the leaf. (b) Use Euler's method of numerical analysis to find the speed and position of the leaf, as functions of time, from the instant it is released until 99% of terminal speed is reached. (Suggestion: Try t = 0.005 s.) 45. A hailstone of mass 4.80 104 kg falls through the air and experiences a net force given by F = mg + Cv2 i moving with velocity v 0 ^ at time t = 0 and thereafter experiencing a net force function of position. ^ kmv 2i . (b) Find the object's velocity as a 42. At major league baseball games it is commonplace to flash on the scoreboard a speed for each pitch. This speed is determined with a radar gun aimed by an operator positioned behind home plate, 18.3 m away. The gun uses the Doppler shift in microwaves reflected from the baseball, as we will study in Chapter 39. The gun determines the speed at some particular point on the baseball's path, where C = 2.50 105 kg/m. (a) Calculate the terminal speed of the hailstone. (b) Use Euler's method of numerical analysis to find the speed and position of the hailstone at 0.2-s intervals, taking the initial speed to be zero. Continue the calculation until the hailstone reaches 99% of terminal speed. 46. A 0.142-kg baseball has a terminal speed of 42.5 m/s (95 mi/h). (a) If a baseball experiences a drag force of magnitude R = Cv2, what is the value of the constant C? (b) What is the magnitude of the drag force when the speed of the baseball is 36.0 m/s? (c) Use a computer to determine the motion of a baseball thrown vertically upward at an initial speed of 36 m/s. What maximum height does the ball reach? How long is it in the air? What is its speed just before it hits the ground? 47. A 50.0-kg parachutist jumps from an airplane and falls to Earth with a drag force proportional to the square of the speed, R = Cv2. Take C = 0.200 kg/m (with the parachute closed) and C = 20.0 kg/m (with the chute open). (a) Determine the terminal speed of the parachutist in both configurations, before and after the chute is opened. (b) Set up a numerical analysis of the motion and compute the speed and position as functions of time, assuming the jumper begins the descent at 1,000 m above the ground and is in free fall for 10.0 s before opening the parachute. (Suggestion: When the parachute opens, a sudden large acceleration takes place; a smaller time step may be necessary in this region.) 48. Consider a 10.0-kg projectile launched with an initial speed of 100 m/s, at an elevation angle of 35.0 . The resistive force is R = bv, where b = 10.0 kg/s. (a) Use a numerical method to determine the horizontal and vertical coordinates of the projectile as functions of time. (b) What is the range of this projectile? (c) Determine the elevation angle that gives the maximum range for the projectile. (Suggestion: Adjust the elevation angle by trial and error to find the greatest range.) 49. A professional golfer hits her 5-iron 155 m (170 yd). A 46.0-g golf ball experiences a drag force of magnitude R = Cv2, and has a terminal speed of 44.0 m/s. (a) Calculate the drag constant C for the golf ball. (b) Use a numerical method to calculate the trajectory of this shot. If the initial velocity of the ball makes an angle of 31.0 (the loft angle) with the horizontal, what initial speed must the ball have to reach the 155-m distance? (c) If this same golfer hits her 9-iron (47.0 loft) a distance of 119 m, what is the initial speed of the ball in this case? Discuss the differences in trajectories between the two shots. Additional Problems 50. In a home laundry drier, a cylindrical tub containing wet clothes is rotated steadily about a horizontal axis, as shown in Figure P6.50. So that the clothes will dry uniformly, they are made to tumble. The rate of rotation of the smoothwalled tub is chosen so that a small piece of cloth will lose contact with the tub when the cloth is at an angle of 68.0 above the horizontal. If the radius of the tub is 0.330 m, what rate of revolution is needed? 52. A car of mass m passes over a bump in a road that follows the arc of a circle of radius R as in Figure P6.51. (a) What force does the road exert on the car as the car passes the highest point of the bump if the car travels at a speed v? (b) What If? What is the maximum speed the car can have as it passes this highest point without losing contact with the road? 53. Interpret the graph in Figure 6.18(b). Proceed as follows: (a) Find the slope of the straight line, including its units. (b) From Figure P6.50 51. We will study the most important work of Nobel laureate Arthur Compton in Chapter 40. Disturbed by speeding cars outside the physics building at Washington University in St. Louis, he designed a speed bump and had it installed. Suppose that a 1 800-kg car passes over a bump in a roadway that follows the arc of a circle of radius 20.4 m as in Figure P6.51. (a) What force does the road exert on the car as the car passes the highest point of the bump if the car travels at 30.0 km/h? (b) What If? What is the maximum speed the car can have as it passes this highest point without losing contact with the road? Equation 6.6, R 1 D 2 Av , identify the 2 theoretical slope of a graph of resistive force versus squared speed. (c) Set the experimental and theoretical slopes equal to each other and proceed to calculate the drag coefficient of the filters. Use the value for the density of air listed on the book's endpapers. Model the cross-sectional area of the filters as that of a circle of radius 10.5 cm. (d) Arbitrarily choose the eighth data point on the graph and find its vertical separation from the line of best fit. Express this scatter as a percentage. (e) In a short paragraph state what the graph demonstrates and compare it to the theoretical prediction. You will need to make reference to the quantities plotted on the axes, to the shape of the graph line, to the data points, and to the results of parts (c) and (d). 54. A student builds and calibrates an accelerometer, which she uses to determine the speed of her car around a certain unbanked highway curve. The Figure P6.51 Problems 51 and 52 accelerometer is a plumb bob with a protractor that she attaches to the roof of her car. A friend riding in the car with her observes that the plumb bob hangs at an angle of 15.0 from the vertical when the car has a speed of 23.0 m/s. (a) What is the centripetal acceleration of the car rounding the curve? (b) What is the radius of the curve? (c) What is speed of the car if the plumb bob deflection is 9.00 while rounding the same curve? 55. Suppose the boxcar of Figure 6.13 is moving with constant acceleration a up a hill that makes an angle with the horizontal. If the pendulum makes a constant angle with the perpendicular to the ceiling, what is a? 56. (a) A luggage carousel at an airport has the form of a section of a large cone, steadily rotating about its vertical axis. Its metallic surface slopes downward toward the outside, making an angle of 20.0 with the horizontal. A piece of luggage having mass 30.0 kg is placed on the carousel, 7.46 m from the axis of rotation. The travel bag goes around once in 38.0 s. Calculate the force of static friction between the bag and the carousel. (b) The drive motor is shifted to turn the carousel at a higher constant rate of rotation, and the piece of luggage is bumped to another position, 7.94 m from the axis of rotation. Now going around once in every 34.0 s, the bag is on the verge of slipping. Calculate the coefficient of static friction between the bag and the carousel. 57. Because the Earth rotates about its axis, a point on the equator experiences a centripetal acceleration of 0.033 7 m/s2, while a point at the poles experiences no centripetal acceleration. (a) Show that at the equator the gravitational force on an object must exceed the normal force required to support the object. That is, show that the object's true weight exceeds its apparent weight. (b) What is the apparent weight at the equator and at the poles of a person having a mass of 75.0 kg? (Assume the Earth is a uniform sphere and take g = 9.800 m/s2.) 58. An air puck of mass m1 is tied to a string and allowed to revolve in a circle of radius R on a frictionless horizontal table. The other end of the string passes through a hole in the center of the table, and a counterweight of mass m2 is tied to it (Fig. P6.58). The suspended object remains in equilibrium while the puck on the tabletop revolves. What is (a) the tension in the string? (b) the radial force acting on the puck? (c) the speed of the puck? Figure P6.58 59. The pilot of an airplane executes a constant-speed loop-the-loop maneuver in a vertical circle. The speed of the airplane is 300 mi/h, and the radius of the circle is 1 200 ft. (a) What is the pilot's apparent weight at the lowest point if his true weight is 160 lb? (b) What is his apparent weight at the highest point? (c) What If? Describe how the pilot could experience weightlessness if both the radius and the speed can be varied. (Note: His apparent weight is equal to the force exerted by the seat on his body.) 60. A penny of mass 3.10 g rests on a small 20.0-g block supported by a spinning disk (Fig. P6.60). The coefficients of friction between block and disk are 0.750 (static) and 0.640 (kinetic) while those for the penny and block are 0.520 (static) and 0.450 (kinetic). What is the maximum rate of rotation in revolutions per minute that the disk can have, without the block or penny sliding on the disk? each minute. It carries each car around a circle of diameter 18.0 m. (a) What is the centripetal acceleration of a rider? What force does the seat exert on a 40.0-kg rider (b) at the lowest point of the ride and (c) at the highest point of the ride? (d) What force (magnitude and direction) does the seat exert on a rider when the rider is halfway between top and bottom? 62. A space station, in the form of a wheel 120 m in diameter, rotates to provide an `artificial gravity' of 3.00 m/s2 for persons who walk around on the inner wall of the outer rim. Find the rate of rotation of the wheel (in revolutions per minute) that will produce this effect. 63. An amusement park ride consists of a rotating circular platform 8.00 m in diameter from which 10.0-kg seats are suspended at the end of 2.50-m massless chains (Fig. P6.63). When the system rotates, the chains make an angle = 28.0 with the vertical. (a) What is the speed of each seat? (b) Draw a free-body diagram of a 40.0-kg child riding in a seat and find the tension in the chain. Figure P6.60 61. A Ferris wheel rotates four times value for T if R = 4.00 m and s = 0.400. How many revolutions per minute does the cylinder make? Figure P6.63 64. A piece of putty is initially located at point A on the rim of a grinding wheel rotating about a horizontal axis. The putty is dislodged from point A when the diameter through A is horizontal. It then rises vertically and returns to A at the instant the wheel completes one revolution. (a) Find the speed of a point on the rim of the wheel in terms of the acceleration due to gravity and the radius R of the wheel. (b) If the mass of the putty is m, what is the magnitude of the force that held it to the wheel? 65. An amusement park ride consists of a large vertical cylinder that spins about its axis fast enough that any person inside is held up against the wall when the floor drops away (Fig. P6.65). The coefficient of static friction between person and wall is s, and the radius of the cylinder is R. (a) Show that the maximum period of revolution necessary to keep the person from falling is T = (4 2Rs/g)1/2. (b) Obtain a numerical Figure P6.65 66. An example of the Coriolis effect. Suppose air resistance is negligible for a golf ball. A golfer tees off from a location precisely at i = 35.0 north latitude. He hits the ball due south, with range 285 m. The ball's initial velocity is at 48.0 above the horizontal. (a) For how long is the ball in flight? The cup is due south of the golfer's location, and he would have a holein-one if the Earth were not rotating. The Earth's rotation makes the tee move in a circle of radius RE cos i = (6.37 106 m) cos 35.0 , as shown in Figure P6.66. The tee completes one revolution each day. (b) Find the eastward speed of the tee, relative to the stars. The hole is also moving east, but it is 285 m farther south, and thus at a slightly lower latitude f. Because the hole moves in a slightly larger circle, its speed must be greater than that of the tee. (c) By how much does the hole's speed exceed that of the tee? During the time the ball is in flight, it moves upward and downward as well as southward with the projectile motion you studied in Chapter 4, but it also moves eastward with the speed you found in part (b). The hole moves to the east at a faster speed, however, pulling ahead of the ball with the relative speed you found in part (c). (d) How far to the west of the hole does the ball land? the range of speeds possible if R = 100 m, = 10.0, and s = 0.100 (slippery conditions)? 68. A single bead can slide with negligible friction on a wire that is bent into a circular loop of radius 15.0 cm, as in Figure P6.68. The circle is always in a vertical plane and rotates steadily about its vertical diameter with (a) a period of 0.450 s. The position of the bead is described by the angle that the radial line, from the center of the loop to the bead, makes with the vertical. At what angle up from the bottom of the circle can the bead stay motionless relative to the turning circle? (b) What If? Repeat the problem if the period of the circle's rotation is 0.850 s. Figure P6.66 Figure P6.68 67. A car rounds a banked curve as in Figure 6.6. The radius of curvature of the road is R, the banking angle is , and the coefficient of static friction is s. (a) Determine the range of speeds the car can have without slipping up or down the road. (b) Find the minimum value for s such that the minimum speed is zero. (c) What is 69. The expression F = arv + br2v2 gives the magnitude of the resistive force (in newtons) exerted on a sphere of radius r (in meters) by a stream of air moving at speed v (in meters per second), where a and b are constants with appropriate SI units. Their numerical values are a = 3.10 104 and b = 0.870. Using this expression, find the terminal speed for water droplets falling under their own weight in air, taking the following values for the drop radii: (a) 10.0 m, (b) 100 m, (c) 1.00 mm. Note that for (a) and (c) you can obtain accurate answers without solving a quadratic equation, by considering which of the two contributions to the air resistance is dominant and ignoring the lesser contribution. Figure P6.71 70. A 9.00-kg object starting from rest falls through a viscous medium and experiences a resistive force R = bv, where v is the velocity of the object. If the object reaches one-half its terminal speed in 5.54 s, (a) determine the terminal speed. (b) At what time is the speed of the object threefourths the terminal speed? (c) How far has the object traveled in the first 5.54 s of motion? 71. A model airplane of mass 0.750 kg flies in a horizontal circle at the end of a 60.0-m control wire, with a speed of 35.0 m/s. Compute the tension in the wire if it makes a constant angle of 20.0 with the horizontal. The forces exerted on the airplane are the pull of the control wire, the gravitational force, and aerodynamic lift, which acts at 20.0 inward from the vertical as shown in Figure P6.71. 72. Members of a skydiving club were given the following data to use in planning their jumps. In the table, d is the distance fallen from rest by a sky diver in a ,free-fall stable spread position, versus the time of fall t. (a) Convert the distances in feet into meters. (b) Graph d (in meters) versus t. (c) Determine the value of the terminal speed vT by finding the slope of the straight portion of the curve. Use a least-squares fit to determine this slope. t (s) 1 2 3 4 5 6 7 8 9 10 d (ft) 16 62 138 242 366 504 652 808 971 1 138 t (s) 11 12 13 14 15 16 17 18 19 20 d (ft) 1 309 1 483 1 657 1 831 2 005 2 179 2 353 2 527 2 701 2 875 73. If a single constant force acts on an object that moves on a straight line, the object's velocity is a linear function of time. The equation v = vi + at gives its velocity v as a function of time, where a is its constant acceleration. What if velocity is instead a linear function of position? Assume that as a particular object moves through a resistive medium, its speed decreases as described by the equation v = vi kx, where k is a constant coefficient and x is the position of the object. Find the law describing the total force acting on this object. Copyright 2004 Thomson. All rights reserved.

Textbooks related to the document above:

Find millions of documents on Course Hero - Study Guides, Lecture Notes, Reference Materials, Practice Exams and more. Course Hero has millions of course specific materials providing students with the best way to expand their education.

Below is a small sample set of documents:

Western Kentucky University - PS - 110
Media Plays a Role in Determining Public Opinion and also in Reporting It Changes in the Media Three Categories the way the news is reported the way we get the news who owns the sources of our news The way the news is reported have seen an evolutio
Western Kentucky University - PS - 110
The Presidency Constitutional Powers Institutional and Political Independence Enumerated Powers powers explicitly defined in the text of the Constitution Veto Power Treaties Appointment Call Congress into Special Session Implied Powers Powers not en
Auburn - PHYS - 1610
Chapter 12 Problems 1, 2, 3 = straightforward, intermediate, challenging Section 12.1 The Conditions for Equilibrium of a Rigid Body1. A baseball player holds a 36-oz bat (weight = 10.0 N) with one hand at the point O (Fig. P12.1). The bat is in eq
Western Kentucky University - PS - 110
Voting and Participation Who Votes? No one last presidential election less than 50% Greatest Participation occurs in Presidential Elections, Compare off year, Primaries, and caucuses General Decline 2 big drops 1920 & 1972 Variations across states
Auburn - PHYS - 1610
Chapter 13 Problems 1, 2, 3 = straightforward, intermediate, challenging Section 13.1 Newton's Law of Universal Gravitation Problem 17 in Chapter 1 can also be assigned with this section. 1. Determine the order of magnitude of the gravitational force
Western Kentucky University - PS - 110
Key Questions How is political knowledge distributed in the United States? How do we develop our political attitudes? How has the media evolved over time? How do we get our news? What is the relationship between the media and the government? Is the
Auburn - PHYS - 1610
Chapter 10 Problems 1, 2, 3 = straightforward, intermediate, challenging Section 10.1 Angular Position, Velocity, and Acceleration 1. During a certain period of time, the angular position of a swinging door is described by = 5.00 + 10.0t + 2.00t2, w
Western Kentucky University - PS - 110
Political Parties & Interest Groups What is a political party? An organized group that seeks to elect candidates to public office by supplying them with a label a party identification by which they are known to the electorate What is an interest gr
Auburn - PHYS - 1610
Chapter 17 Problems 1, 2, 3 = straightforward, intermediate, challenging Section 17.1 Speed of Sound Waves 1. Suppose that you hear a clap of thunder 16.2 s after seeing the associated lightning stroke. The speed of sound waves in air is 343 m/s and
Western Kentucky University - PS - 110
What does the Constitution say about the Judicial Branch? Almost Nothing but did want to establish an independent judiciary Art. III establishes the Supreme Court Art. II gives the power of appointment to the President Two questions How would the f
Western Kentucky University - PS - 110
NOTE: SOME PARTS OF THESE NOTES NEED TO BE UPDATED ESPECIALLY SOME OF THE NUMBERS OF FEMALES, HISPANICS, ETC. How is Congress structured? Bicameral Structure independent chambers Part of checks and balancesHouse -Larger 435 based on population
Western Kentucky University - PS - 110
Civil Rights African American Timeline 1787 Constitution writing with 3/5 compromise 1809 importation of slaves banned 1857 Dred Scott case African-Americans aren't citizens 1861 Civil War 1865 13th Amendment slavery illegal 1868 14th Amendme
Auburn - PHYS - 1610
Chapter 18 Problems 1, 2, 3 = straightforward, intermediate, challenging Section 18.1 Superposition and Interference 1. Two waves in one string are described by the wave functions y1 = 3.0cos(4.0x 1.6t) and y2 = 4.0sin(5.0x 2.0t) where y and x are
Auburn - PHYS - 1600
Chapter 16 Problems 1, 2, 3 = straightforward, intermediate, challenging Section 16.1 Propagation of a Disturbance 1. At t = 0, a transverse pulse in a wire is described by the functiony6 x23where x and y are in meters. Write the function y(
Auburn - PHYS - 1600
Chapter 20 Problems 1, 2, 3 = straightforward, intermediate, challenging Section 20.1 Heat and Internal Energy 1. On his honeymoon James Joule traveled from England to Switzerland. He attempted to verify his idea of the interconvertibility of mechani
Auburn - PHYS - 1610
Chapter 22 Problems 1, 2, 3 = straightforward, intermediate, challenging Section 22.1 Heat Engines and the Second Law of Thermodynamics 1. A heat engine takes in 360 J of energy from a hot reservoir and performs 25.0 J of work in each cycle. Find (a)
Auburn - PHYS - 1610
Chapter 4 Problems 1, 2, 3 = straightforward, intermediate, challenging Section 4.1 The Position, Velocity, and Acceleration Vectors 1. A motorist drives south at 20.0 m/s for 3.00 min, then turns west and travels at 25.0 m/s for 2.00 min, and finall
Auburn - PHYS - 1610
Chapter 3 Problems 1, 2, 3 = straightforward, intermediate, challenging Section 3.1 Coordinate Systems 1. The polar coordinates of a point are r = 5.50 m and = 240. What are the Cartesian coordinates of this point? 2. Two points in a plane have pola
UC Riverside - BUS - 136
Lecture 1IntroductionLecture 1, BUS 136, Investments, UCR1General Information Instructor: Professor Canlin LiOffice: 137 Anderson HallPhone: (951) 8272325Email:canlin.li@ucr.eduLecture 1, BUS 136, Investments, UCR2Class Mater
University of Ottawa - MGMT - 4444
Solution to Assignment Problem 15-4The NIFTP and Taxable Income for Fortan Ltd. for the period ending Dec. 31 is as follows: Accounting Net Income Before Taxes Add Back: Golf Club Membership Fees $1,080 Non-Deductible Portion of Meals 410 Warranty R
UC Riverside - BUS - 136
Lecture 2Financial Markets And InstrumentsLecture 2, BUS 136, Investments, UCR1Financial MarketsFinancial markets are "places" where people buy or sell financial assets or securities such as bonds, stocks, options, or futures. Examples: Se
Elon - PSY - 111
Psychology Class NotesPsych The Mind Logos The study ofPsychology: The scientific study of behavior and mental processes. - Scientific Study - Behavior - Mental Processes Subfields of Psychology - Cognitive Psychologists o Knowing stuff around y
Hudson VCC - PHYS - 102
Matthew Malek Lab Partners: Jon and Christina Lab #1 08/31/2006 Linear Expansion Objectives: The objectives of this lab were to experiment with different types of metals, add heat to this metal and measure how more they expand. We want to see the dif
UC Riverside - BUS - 136
Lecture 6Capital Asset Pricing ModelLecture 6, BUS 136, Investments, UCR1The Capital Asset Pricing ModelThe CAPM is a centerpiece of modern finance that gives predictions about the relationship between risk & expected return We will first l
Onondaga CC - PSY - 101
I. The Twenties II. Normalcy A. "America's present need is not heroics but healing; not nostrums but normalcy; not revolution but restoration. not surgery but serenity" Warren G. Harding. B. Harding 1. Released Eugene Debs from prison and invited him
Virginia Tech - PHYS - 2306
40.1: a) EnE1n2h2 8mL2E167h2 8mL2J.(6.63 10 34 J s)2 8(0.20 kg)(1.5 m) 21.22 10b) Et1 2 2E mv v 2 m d 1.5 m v 1.1 10 33 m s2(1.2 10 67 J) 0.20 kg1.4 1033 s.1.1 10 33 m sh2 3h 2 c) E2 E1 (4 1) 3(1.22 10 67 J) 3.7 10 67 J. 2 2
Virginia Tech - PHYS - 2306
40.24: Using Eq. 40.21 E E G 16 1 U0 U0163112.0 eV 12.0 eV 1 15.0 eV 15.0 eV2.562m(U 0 8.9 109 m T Ge2 L 1E)2(9.11 10kg)(15.0 12.0 eV)(1.60 10 19 J/eV) (6.63 10 34 J s) 2L1 ln(G T ) 21 2.56 ln 8 1 2(8.9 10 m ) 0.0250.26 nm.
Virginia Tech - PHYS - 2306
40.19: Eq.(40.16) : Asin2mE x B cos2mE x d 2 dx 2A2mE 2mE 2mE 2mE sin x B cos x 2 2 2mE ( ) Eq.(40.15). 2
Virginia Tech - PHYS - 2306
40.16: Since U 0 6 E we can use the result E1 0.625 E from Section 40.3, so U 0 E1 5.375 E and the maximum wavelength of the photon would behc U0 E1 8(9.11 10hc (5.375)(h 2 8mL2 )318mL2 c (5.375)h 1.38 10 6 m.kg)(1.50 10 9 m) 2 (3.00 108 m
Virginia Tech - PHYS - 2306
40.11: a) Eq.(40.3) :d2 dx2h 2 d 2 . E. 8 2 m dx2 d2 d ( A cos kx) ( Ak sin kx) 2 dx dx Ak 2 h 2 cos kx EA cos kx 8 2 mEAk 2 cos kxk 2h2 8 2 mE 2mE k . 2 2 8 m h b) This is not an acceptable wave function for a box with rigid walls since w
Virginia Tech - PHYS - 2306
40.6: a) The wave function for n 1 vanishes only at x 0 and x L in the range 0 x L. b) In the range for x, the sine term is a maximum only at the middle of the box, x L / 2. c) The answers to parts (a) and (b) are consistent with the figure.
Onondaga CC - PSY - 101
1. The Process of learning to transfer a response from a natural stimulus to another, previously neutral stimulus, is called? A. Desensitization C. Classical Conditioning B. Operant Conditioning D. Modeling 2. A response that takes place in an organi
UNC - MUSIC - 145
Miles Davis o `King Maker' o Begin to hear real personality in 1945 in recordings with Charlie Parker o 1947- `Donna Lee' Parker/Davis Dispute over author o 1947- recording with `Miles Davis and his Allstars' Max Roach John Lewis o 1948- offered
UNC - MUSIC - 145
Jerry Mulligan o Baritone sax o Time Magazine 1953- `In comparison with the frantic extremes of Bop, Mulligan's jazz is rich and even orderly' o `Cool Jazz' player o Arranger for Birth of The Cool Twelve sides put together by Miles Davis o Arranger
UNC - MUSIC - 145
Be-bop oLong note followed by short note Name comes from scat singing of these notes o Sometimes notes in improv dont go with chords or changes o Sophisticated improv o Unison chorus Very prominent Unique to bop Front line playing head/tune in
Auburn - HIST - 1010
Chapter 6 Period of warring states proved to be good for china. Review Zia, shang shou period or warring states-Period of chaos, warfare is the norm. chin only lasted 14 years han Confucius kong fuzi 551-479 BCE Teaching-anelects The way to have good
UNC - MUSIC - 145
Swing o o o oString bass Sax section Swing 8 beat Rise of establishment bands, sweep bands, establishment orchestra Bands primarily involved in dance music Jimmy Lunceford Benny Moten Kansas city Duke Ellington Count Basie Piano player for Mot
UNC - MUSIC - 145
Stride Piano o All about the left hand o Related to march music o `Maple Leaf Rag' Scott Joplin o Uses back beat 2 and 4 o Jelly Roll Morton Pieces structured similarly to ragtime Boasted he invented jazz Diamond in front tooth One of the first
UNC - MUSIC - 145
Thursday, January 17, 2008 I) Rhythm and Blues A) Became very identifiable in late 1940s 1) Given real personality B) Wynonie Harris 1) 1947- `Good Rocking Tonight' (a) Number one hit in 1947 2) Member of all black record label (a) `race records' C)
UNC - MUSIC - 145
Many jazz players got their starts playing gospel music in churches 40's- gospel begins to become popular Jubilee style Just voices, no instruments Spoken or sung lead Thomas Dorsey Mixed gospel with popular jazz/blues tunes Lead Belly Combined
UNC - MUSIC - 145
For quiz, 1949,59,69 Albums in Davis' career Kind of Blue, Bitches Brew, Birth of Cool, `So What' info Stylistic contributions Listening: Miles Davis and few beforeFusion JazzCombining of different styles o Instruments o Forms o Arrangements o fun
UNC - MUSIC - 145
Louis Armstrong o Born 8-4-1901 o Died in 1971 o Dropped out of School at age 11 Began to listen to music in storyville o Jan 1, 1913 Shot a pistol in air Sent to reform school Took up coronet o Took King Oliver's place in 1918 in Kid Ory's Band o
UNC - MUSIC - 145
1917- First Jass Recording- Original Dixieland Jass Band (ODJB) `Livery Stable Blues' `Dixie Jazz Band One-Step' Led by Nick LaRocca, trumpet/coronet player Formed in Chicago in 1916 5 musicians Coronet, clarinet, Trombone, piano, drums `Stoptim
UNC - PHYA - 113
Improving Muscular Strength, Endurance and Power Lifetime Fitness Lesson 4, Chapter 5 I. Why is muscular strength important for everyone? Essential component of fitness Important for healthy living (gait, posture, function) Important in fitness progr
UNC - PHYA - 113
Nutrition Lifetime Fitness Lesson 6, Chapters 7 and 8 I. Why do you need to know about nutrition? i)II. Basic Principles of Nutrition i) Diet refers to food selection ii) 3 Essential nutrients: (1) Roles: growth, repair, maintenance, regulation, an
UNC - PHYA - 113
Practicing Safe Fitness Lifetime Fitness Lesson 8, Chapters 9 and 10 I. How can you prevent injuries?II. What do you do if you are experiencing discomfort or pain?III. What types of injuries might occur in an exercise program? i) Fractures (1) Br
UNC - PHYA - 113
Flexibility and Body Composition Lifetime Fitness Lesson 5, Chapter 6 I. Why is it important to have good flexibility? (1) Flexibility- range of motion possible about a given joint (2) Increased flexibility helps with balance, performance and reactio
UNC - PHYA - 113
Nick Nelli Weight Training 9/24/2007 Based on my 4 day results, I feel that I need to become more consistent with my eating habits. I had a couple days where I ate significantly more than others, as well as significantly worse. I should work on more
UNC - MUSIC - 145
Types of Blues o Country Blues Folk Blues/Delta Blues Usually sung by a male Accompanied by guitar/banjo/violin (early) Irregular beat Free form Talks of `hard life' First recording- 1924 - Papa Charlie Jackson - `Papa's Lawdy Lawdy Blues' Born
UNC - MUSIC - 145
Bennie Goodman o All music in swing style o Biggest superstar in 1930's o Greater following than Ellington o Not well liked by his musicians o Clarinet player at age 17 o Began recording at 18 o Big impact in 1930's Leading own band in 1934 o Stole
UNC - MUSIC - 145
Duke Ellington o Influenced by eastern music o Didn't like the term `jazz', against labeling music o Career from 1920's-1970's o Changed combinations of instruments and pitches etc o Changed `meter'- beats in a bar o Changed structure- 64 bar, AABACA
UNC - MUSIC - 145
After depression, real emphasis on pop culture o Dancing large part Social dance Performance dance Swing era lasted till end of WWII o Large jazz orchestras Hot jazz Upbeat dance tunes `Hot' was a racial term describing African influence Sweet ja
UNC - MUSIC - 145
1920's King of Jazz Paul Whiteman Viola player for symphony Put together a 12-15 musician jazz band String players Tried to blend symphonic music and jazz Very racist in hiring policies Very refined `Sweet Jazz' Led to the `Swing Era' 1890-
UNC - MUSIC - 145
Freddie Hubbard o Trumpet player Sonny Rollins o Tenor sax player Wynton Marsalis o Trumpet Airto Moreira o Auxiliary drummer Flora Purim o Singer Carmen McCray o Singer/piano Oscar Peterson o piano Jon Faddis o Trumpet James Moody o Sax, tenor and a
UNC - MUSIC - 145
Jimmy Hamilton o Clarinet player o Benny Goodman style Johnny Hodges o Alto sax Paul Gonzalez o Tenor sax
UNC - MUSIC - 145
Jazz Piano Stride Left hand technique James P Johnson `Father of Stride' 230 pop tunes, symphonic tunes, musicals 1894-1955 1921- `Carolina Shout' Made on piano roll `You've Got to be Modernistic' `Charleston' Became a dance Strictly piano, ne
UNC - MUSIC - 145
Kansas City Swing o Based on blues riffs o Benny Moten Band centered in Kansas City Hired Count Basie as pianist Died of botched tonsil removal Count Basie took over group `Moten Swing' 1932 Basie on piano Borrow chord changes from 1930's tune `D
UNC - MUSIC - 145
Thursday, January 10, 2008 Elements of Jazz Improvisation Chords o Cluster chords Scales/Modes o Succession of notes in a particular directions Song Form o AABA AABA AABA. Bar o Grouping of Beats o Early song form, 4 beats. 32 bars. o 8 bars, 8 bars,
Assumption College - ENG - 130
Humble SuccessStephanie Russo English 130.03Russo 1Humble Success A leader by definition is someone that guides. Leaders do not have to be famous to be important; they just have to display the right characteristics. Scott Brackett, the owner of
Assumption College - ENG - 130
Stephanie Russo April 5 2008 Comp 130.03 Scopes Trial Editorial Dayton is America In the editorial, Dayton is America, by W.E.B Du Bois, published in September 1925, compares the entire country of America to Dayton, Tennessee. Du Bois says that altho
Hudson VCC - PHYS - 102
Matthew Malek Lab Partners: Jon and Christina Lab #2 09/13/2006 Specific Heat Capacities of Metals Objectives: The objectives of this lab were to experiment with different techniques of calorimetry. We also want to determine the specific heat capacit