# Register now to access 7 million high quality study materials (What's Course Hero?) Course Hero is the premier provider of high quality online educational resources. With millions of study documents, online tutors, digital flashcards and free courseware, Course Hero is helping students learn more efficiently and effectively. Whether you're interested in exploring new subjects or mastering key topics for your next exam, Course Hero has the tools you need to achieve your goals.

3 Pages

### paratrooper

Course: MATH 246, Fall 2008
School: Maryland
Rating:

Word Count: 712

#### Document Preview

246 Math - ODE for Scientists and Engineers - Section 0101 Instructor: Prof. Dolzmann Fall Term 2003 How to use the event locator option It seems that the syntax for the event locator option is slightly dierent from the one outlined in CHLOS in recent releases of MATLAB. Here is one way to implement the example on pp 108-110. There are three steps involved. a) Denition of the event locator function as an m-le. We...

Register Now

#### Unformatted Document Excerpt

Coursehero >> Maryland >> Maryland >> MATH 246

Course Hero has millions of student submitted documents similar to the one
below including study guides, practice problems, reference materials, practice exams, textbook help and tutor support.

Course Hero has millions of student submitted documents similar to the one below including study guides, practice problems, reference materials, practice exams, textbook help and tutor support.
246 Math - ODE for Scientists and Engineers - Section 0101 Instructor: Prof. Dolzmann Fall Term 2003 How to use the event locator option It seems that the syntax for the event locator option is slightly dierent from the one outlined in CHLOS in recent releases of MATLAB. Here is one way to implement the example on pp 108-110. There are three steps involved. a) Denition of the event locator function as an m-le. We dene a function events(t,y) (you can choose any name) which has to return three output arguments, the value of the function at (t, y), information whether the computation is to be continued after the event (in isterminal), and a ag that determines whether the slope of the event function at the time of the event is relevant (in direction). Here is the le for the event y = 1.5 which we write in standard from y 1.5 = 0. % % The definition of the event y-1.5=0. % % isterminal=1 indicates that the evaluation stops % direction=0 indicates that all zeros are computed % (y increasing or decreasing) % function [value,isterminal,direction] = events(t,y) value = y-1.5; isterminal=1; direction=0; b) Denition of f (t, y) as an m-le. If you use the event locator property in ode45, you need to dene the right-hand side f of your ODE y = f (t, y) as an m-le: % % the right hand side of the ODE % function u = f(t,y) u=t./y; c) Setting the parameter and calling the solver. Finally we need to tell the solver that we want to test for an event and how the event function is called. Note that the event function must have the standard form discussed above. Since it is an m-le, we have to use the notation @events in order to get the function handle which is needed as the input argument. The same is true for the function f in the call to ode45. Here is the MATLAB code: % % turn events on and define the events function % options = odeset(events,@events); [t, y, tev, yev, ie] = ode45(@f,[0,2],1,options) plot(t,y) 1 2 Outline for the paratrooper problem You can solve the second part of the paratrooper problem with the events option in ode45. Here is some outline of the code MATLAB you might want to use. % % % % % % % Separate m-file for the event function Definition of the event. Note that y is a vector with two components. Make sure that your condition implies that the height of the paratrooper is equal to zero. function [value,isterminal,direction] = hitground(t,y) value = ...; isterminal=1; direction=0; % % % % % % % % Separate m-file for the right-hand side f(t,y) while the parachute is open. The forces acting on the paratrooper when the parachute is open. Make sure you use the right constant for air resistance. Recall that you need to return a vector. function f = paratrooper(t,y) f = [... ; ...]; % % % % % % % % % % % % Here are the commands to solve the problem free fall, Newtons law F=ma; y(t) F = height at time t [sec] = force due to gravitational acceleration (-mg=-32m) and drag force due to air resistance +\gamma (y)^2 recall that the mass of the paratrooper is given by 195/32 = 6.0938 close all; figure; hold on % % for simplicity we use an inline function in the first part. You can % also write a separate m-file if you wish to do so % force = inline([... ; ... ], ... ); % % call ode45 with the correct parameters and initial conditions % 3 [xp,yp]=ode45( ... ); % % Check: your s...

Find millions of documents on Course Hero - Study Guides, Lecture Notes, Reference Materials, Practice Exams and more. Course Hero has millions of course specific materials providing students with the best way to expand their education.

Below is a small sample set of documents:

Maryland - MATH - 466
Here is the denition of the function g as an mle: % % a function written as an mfile %function y = g(x) y=exp(-x)-cos(x); We now dene the bisection method as a subroutine that accepts the function f for which we want to determine the zero as an arg
Maryland - MATH - 466
)C P('t44ml $&amp;% 4 2&quot; C { m % e } f$ ! # h ih p i r } u h dGjdk{ C {tkotk{ {GqDju I&amp;EdIy &amp;goe!dok&amp;j!Gok|htjh kD!q}g2G{$D$g{kjhj$4qr$oG{okkyu h n e f fe } n e e ih hfe h } i f
Maryland - MATH - 466
AMSC/CMCS 466 Introduction to Numerical Analysis I Spring Term 2006 Instructor: Georg Dolzmann Homework set #2Problem 1: a) Suppose that a, . . . , f are oating point numbers. Cramers rule for solving the linear system ax + by = e cx + dy = f gives
Maryland - MATH - 466
m m ! $4won1t2xG41t&amp;v$ r o r x u f $i#4mGG4yv4ty2&quot;!nrn! ytdpnwtr u 9Pvu!j4m &amp;G! x C d$ ! m G $mhGnB dD  !4 o q u o u m m Maryland - MATH - 466 ~ | } } dD(Ud$Ge2&amp;14&amp;ek1$eeGd&amp;G(Dei !xv v{w f h hs d df s fs s ki!g$eGIG$h$St!Dt d s fd j d fd fd d s d f d j i s y df k$kl!eG$s!ht$u te2t4s lG$lsGkk!lskP 4&amp;i4z W G4!4! ! 8 $! !4 G$ 81i
Maryland - MATH - 466
AMSC/CMCS 466 Introduction to Numerical Analysis I Spring Term 2006 Instructor: Georg Dolzmann Homework set #5Problem 1: Let A Rnn be a n n matrix, x Rn and ci , i = 0, . . . , n scalars. Consider the following product: y = (c0 I + c1 A + c2 A2
Maryland - MATH - 466
DDGv!$vDGS42(4vdG S(g(D Wv4GD$vv4v24G&amp;8 i! p s g g r d t k g r s t j r x s r d t k vG$4v !$vDo$r$hnxfw(e $4dGmt$S&amp;msf r !d mxuov$G!SmxemvG2$oem&amp;r k k t s r p s k k
Maryland - MATH - 466
G42G4 z | (9 W$i k x E !$sG$p$stGpp&amp;944 !Gp($k P Y G4~$1 | s | ~ | | z z x } s x | s k k t k k k t k k k k t k ! P pIpGpGptd(tG$2G$Ug~I!diyt!4 |s x l
Maryland - MATH - 466
Maryland - MATH - 466
q e e e e e e e q e ee C $pG4ppG$Gy2IpG2p G$q2G4q4$G$q2p4S$42C $qGpyDGy214dl~ e q e e q 24v($8SU e GyddG C1pCI6WC r e q q $qGpC!G4qdgppGGpG$1dp$GD Il&amp;EdI Maryland - MATH - 466 C d 44 D 5E o o d do o d d d d od d d !GBdvl$Gs$o1!1v2$v$oId$vYEm o q o d om d q v!2W5gjC p4svs$ov2G44pvG 9 4 44E l S5 q dqo$lG!2Gd4r &amp;Gddn vv8 22v q
Maryland - MATH - 466
AMSC/CMCS 466 Introduction to Numerical Analysis I Spring Term 2006 Instructor: Georg Dolzmann Homework set #11Problem 1: Let P2 denote the space of all polynomials of degree less than or equal to two on the interval [1, 1]. Dene the inner product
Maryland - MATH - 612
AMSC 612 Numerical Methods for Partial Dierential Equations Spring Term 2004 Instructor: Georg Dolzmann Homework set #1Problem 1: [Morton&amp;Meyers 2.1] (i) The function u0 (x) is dened on [0, 1] by u0 (x) = 2x 2 2x1 if 0 x 2 , 1 if 2 x 1.Show
Maryland - MATH - 612
e d} e z k d e } h } d id ik nk hk h y d s u3 s ~r'|{rXe k s z s h y k s e #h s jXh y DiAjh Ai u h s jAUre s k { d de } h} d jh s '3'h y e s #jh s Xh y i|z re #h s jXjh s 'irh y 3|z d s h tr de } h} { d h r e s k |r
Maryland - MATH - 612
AMSC 612 Numerical Methods for Partial Dierential Equations Spring Term 2004 Instructor: Georg Dolzmann Homework set #2Problem 1: [Morton&amp;Mayers 2.2] (i) Show that for every positive value of = t/(x)2 there exists a constant C() such that, for all
Maryland - MATH - 612
p y E v ty xv &quot;e t r E y p q y E&amp; vtxv 4e r y E&amp; v r t y E&amp; v &quot;e 4r r p p | v h v 2 s y E &amp; 2qk y E&amp; D Bnofn | } y E r qT v E p y E&amp; vtv 4e r y E&amp; v r y E&amp; v &quot;e y p g g h g g n k f } h phk n
Maryland - MATH - 612
AMSC 612 Numerical Methods for Partial Dierential Equations Spring Term 2004 Instructor: Georg Dolzmann Homework set #3Problem 1: [Morton&amp;Meyers 2.7] Show that the leading order term in the truncation error of the explicit schemen+1 n n n n n Uj
Maryland - MATH - 612
o T o r r r r T r r r q E E E nB~wt4tg~ | j j | pg | o T o Er r r Er T r r r qu i im i g pm i i hm qpi j m m j qpm 4j X&amp; th m iy i &amp; j i i tg j t| s4g j | BBu 4 j m
Maryland - MATH - 612
I Pu 6 kD d# DDR fj l n e e er m jf ru n n r r r nrj Pp6}6tf6jkrw6D~I)kqtk2vW tItII)P) qtxrt vrGx)krtue)rp~)v8Pppgn)on s s e z n on uf e m h n n r r n o m h m i tHmI~I j v r r e e r w
Maryland - MATH - 612
wtqwtt&amp;&quot;&amp; rwzswq XBeuzq&amp;emx9ugwxg&amp;sr~&amp;Be&quot;rXrqip&amp;Xqp v v g { p p h oj p p u u p oj o k u u g uy p h x g u peo u u p u u u {le wFot~t l y Rrwmes4p $stuBg&quot;tw&quot;zv4B}zktp2tlX~whr&amp;qqBl)wBer2Berwc TE c n p u u kn p u g p Maryland - MATH - 612 g{ olh h xl x g{ l 1IvlzrvxIzftI)%vzPIw p e{ t | p{pkw g t p e{ pp {p n pw pkp g t p e{ { o j t g pw pkp lw l kp tk )zUtzymymihrtzUsytmqrtzGvl)UtI| vytsIm6P6yTIsrm6l o | { p g p j } p p e { p g r k p { p t mPsGvrmk %)zG)vzszW)6) Maryland - MATH - 612 E s &amp; E c 2 t t t k z { x p p z p o h t h 9h 2wwq{ wq{ tl9wh 4qlmgrw&quot; &amp;BeHtvtBl(vlDsvxzBgp t&quot;Blo {fwt&amp;lx c(Bgx v Q&quot;2z t lw p z t{ gt p z p pn w p gt p z z oj t g w p p w l p k &amp;BeIwqBpyzmpykmwihswB Maryland - MATH - 612 him q p nmu j u g em pu p nm jih g em qi pi nu i g n p u k i hg n n e IoIudIir#ln)r|)ottI6liorkI|)YrdIhort6)d6IfvIIfh)f #oo@IP#% %Pb)PbIrq%6tP6Pt #t6Pt #oo@IP#% )tIr6PqttttP6Pt b6Pt 6vo@IP# Maryland - MATH - 612 htpintutiBoqu2mo&amp;Xq{&amp;petwt4miposltBi{&amp;BeUqtBihpoqwX4ig&amp;X4tfvhtt h &amp;fd r q n k u g n q u q n k h g n r i q u o q u l i g o f o e (2pp7Yt&quot;2cc c&quot;&amp;&quot;tqTrc4w&quot;4&quot;w (2sw&quot;YY4&quot;w (2pp7Yt&quot;2cc &amp;wstqT4q&quot;rwwww&quot;4&quot;w ( Maryland - MATH - 612 | p yp r eg jp m p h w rpg p h hm ItiCIir#F'%qR)irxh)Diltiqtsh nxigq@|qPmhtj6p6xshir6rv)l~p)~vDs6IqrIvI~)6i DI)YIe p h j r e e m jp w rr e r m gp g e jm r m eh j6xeitj#%Yqp~iqDrI~e%noRp)sshYsIlPo#GI~eitPq)i#GI~eir~Ii)sR6e r Maryland - MATH - 612 | w | u h l h i h l h q f q i i v o qwBwtl RqwB9r&amp;Bt}fBwhswtf(qlBwh&amp;}i)&amp; | u | il q i h v q o h o h s g wqX&amp;}i4plrogw}iq4wfrs}tBf&amp;BiwBss 2Uwst}mrvqlwvX}x (| wQ | u q h i v i i v o wcrwtl Maryland - MATH - 612 ~ ~ ug w w t gt ~f w ) WPmr)r% qoIeIq)o)r ) r #~ w ut w t f f t g~ ~ ~ u g u f g wg )#vT)tmmtGIT)r )~IIrtT8ymuIt )rmue 6I%If vrr6f t u g t ~ t w ~ ~ ~ t ~ t w g gg ~ f vrPGr %)o~oq# I QHIg r Maryland - MATH - 612 tqT4&amp;4&quot;ctwTtsc&amp;&quot;&amp;tsq&amp;IwTct&amp;sc h h ~ tsu4tsg&amp;(4`s&amp;nv gtg)&amp;ss Xw ~&amp;sj4vX&amp;XnpD | )Im ) x i m ) q h ~ v c qptgywttBgtu ~&amp;f i | wz Im xm q ~ u h u h h d &quot;v4n4f~)Xw Maryland - MATH - 612 I p i Ipp~o)p#lyI g rtIj)jrIgjDs el) v o)pi f h ngnnm m fi vk v i gs m fi i umi s nkm m f v jqtjlp)ptpjD)pP v )tl m prC#lI|)jojt#x oIt nik u m fi g mn ti tnis m fi i n vk h gi vk u u g m fi ms t n g )bq' v s b v s q 1)b v s b v s Maryland - MATH - 612 u x r Utk t |Ezyx }lw}uwwtk lg u u } u u x q utk 4 ~ r utk 4 ~ r Utk t ~ | Rzyx u ~ w u j t r k ~ x l g wqk &quot; (t h sX&amp;BsBr4c |zx u&amp;q ~ &amp; &amp;~ m l l j lu l t Maryland - MATH - 612 srpr|)yqtj6Wyyyrr2)eqqD~j)yIvoG6oyyyI2)8rItsjtysmys p ps} n x o hshw p h fs p fs} x p x h fs w t q pshwwo h fs s zo f p q} f p xh lremtry)smrh)Iy))6k6Dq#Trr16brx2ysy6} h z hw h fs f p x | ow n q q} x zh h fs h | o s} fs h o } h pw Maryland - MATH - 612 B l l l R v h { o { s h r r { of wBhrst|&amp;qpo&amp;qprnq{tun)wBfXBn9wt|qhg}&amp;gd u l u u w u x 2 w u X eu ll x u x u u T u Xu u Maryland - MATH - 612 r r &amp;u&quot;r &amp;u2q &amp;B( Xq y } h f { v 4vl}wl&quot;{ihqtvrs&amp;i{B}yB} Ic q 4vl}rw&quot;Ek twtf&amp;qu44{ v l}4rvyh wr&amp;9kEsg &amp;Qdv { { y f d h x f f k &quot; v { Bmy es q q f y h x o h y } { yf y &amp;Bm{I4vl}rw&quot;&amp;lmI } k v y py Maryland - LIB - 06 FY2006 Serial Review: Current Subscription Master ListTitle Department Fund Budge Type t ISSN Order # of SO shipment 04 EPayments s Use 04-05 04-05 Bound Current Vendor Manager[Mediterranean studies]HistorySO12J63 13R93 12J63CPA103700109 Maryland - ECE - 03 DIMACS Series in Discrete Mathematics and Theoretical Computer ScienceA Game-theoretic Look at the Gaussian Multiaccess ChannelRichard J. La and Venkat AnantharamABSTRACT. We study the issue of how to fairly allocate communication rate among the Maryland - ECE - 02 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 3, MARCH 2002437Optimal Routing Control: Repeated Game ApproachRichard J. La and Venkat Anantharam, Fellow, IEEEAbstractCommunication networks shared by selfish users are considered and model Maryland - ECE - 02 272IEEE TRANSACTIONS ON NETWORKING, VOL. 10, NO. 2, APRIL 2002Utility-Based Rate Control in the Internet for Elastic TrafficRichard J. La and Venkat Anantharam, Fellow, IEEEAbstractIn a communication network, a good rate allocation algorithm sh Maryland - ECE - 04 1006IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 49, NO. 6, JUNE 2004REFERENCES[1] M. Cannon and B. Kouvaritakis, Infinite horizon predictive control of constrained continuous-time linear systems, Automatica, vol. 36, pp. 943955, 2000. [2] W. H. Maryland - ECE - 04 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 12, NO. 6, DECEMBER 20041079Nonlinear Instabilities in TCP-REDPriya Ranjan, Eyad H. Abed, Fellow, IEEE, and Richard J. LaAbstractThis work develops a discrete-time dynamical feedback system model for a Maryland - ECE - 04 Characterization of Queue Fluctuations in Probabilistic AQM MechanismsPeerapol TinnakornsrisuphapQUALCOMM, Inc. 5775 Morehouse Drive San Diego, CA, 92121Richard J. LaDept. of Electrical and Computer Engineering and Institute for Systems Researc Maryland - ECE - 06 94IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 14, NO. 1, FEBRUARY 2006Global Stability Conditions for Rate Control With Arbitrary Communication DelaysPriya Ranjan, Member, IEEE, Richard J. La, Member, IEEE, and Eyad H. Abed, Fellow, IEEEAbstractW Maryland - ECE - 06 108IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 14, NO. 1, FEBRUARY 2006Asymptotic Behavior of Heterogeneous TCP Flows and RED GatewayPeerapol Tinnakornsrisuphap, Member, IEEE, and Richard J. La, Member, IEEEAbstractWe introduce a stochastic model Maryland - ECE - 04 1Downlink Beamforming Algorithms with Inter-Cell Interference in Cellular NetworksTianmin Ren and Richard J. La Member, IEEEAbstract We study the issue of handling unknown inter-cell interference in multi-cell environments with antenna arrays at Maryland - ECE - 06 1Stability of a Rate Control System with Averaged Feedback and Network DelayRichard J. La and Priya RanjanAbstract We study the stability of a variant of Kellys rate control scheme in a simple setting with a single ow and a single resource. The Maryland - ECE - 99 Maryland - ECE - 01 Window-Based Congestion Control with Heterogeneous UsersRichard J. La and Venkat Anantharam Department of Electrical Engineering and Computer Sciences University of California at Berkeley hyongla, ananth @eecs.berkeley.eduAbstract We investigate th Maryland - ECE - 02 Nonlinear Instabilities in TCP-REDPriya Ranjan, Eyad H. Abed and Richard J. LaAbstract This work develops a discrete time feedback system model for a simplied TCP (Transmission Control Protocol) network with RED (Random Early Detection [2]) control Maryland - ECE - 2002 1Bifurcations of TCP and UDP Trafc Under REDPriya Ranjan, Richard J. La, and Eyad H. AbedAbstract Recently researchers have proposed active queue management (AQM) mechanisms as a means of better managing congestion at the bottlenecks inside the n Maryland - ECE - 02 ~ @ ty x{~ tn } iViyy y6i~yhy y@ X~}ttyi} yH re}~ &quot;i ~ yV ) tv} iy}ny ~ Xyyt} | t{~ }~ ti} ny } t i{6} } @i~yX{ y|~ 4t~ @ R}t ytX{ yiy y 3 y y~ t {y~ y ~ ~ } ~ v3~y} yt} y y}y ~iy~ }tyR~ ~i{ 6)y) }y i yiy~ X~y yHt }t &quot;) Maryland - ECE - 02 4 3 2 11) 0$ ( &amp; '\$ %&quot; #! Sq tSX@ Srd r w@w X1 @ fXwv@cEfSXqwr@VfSXfrrwS@S
Maryland - ECE - 03
Instability of a Tandem Network and its Propagation under REDRichard J. La University of Maryland, College Park hyongla@eng.umd.edu.Abstract Random Early Detection (RED) mechanism has been proposed to control the average queue size at the bottlene
Maryland - ECE - 03
Analysis of Adaptive Random Early Detection (ARED)R. J. La, P. Ranjan, and E. H. Abed Department of Electrical and Computer Engineering University of Maryland, College Park, MD, 20742, USA. Recently TCP/RED networks are shown to exhibit a rich set o
Maryland - ECE - 03
Modeling TCP Trac with Session Dynamics - Many Sources Asymptotics under ECN/RED GatewaysP. Tinnakornsrisuphap, R. J. La, and A. M. Makowski Department of Electrical and Computer Engineering University of Maryland, College Park, MD, 20742, USA. Shor
Maryland - ECE - 04
Optimal Transmission Scheduling with Base Station Antenna Array in Cellular NetworksTianmin Ren, Richard J. La and Leandros Tassiulas Department of Electrical &amp; Computer Engineering and Institute for Systems Research University of Maryland, College
Maryland - ECE - 04
Measurement Based Optimal Multi-path RoutingTuna Giiven, Chris Kornmareddy. Richard J. La. Mark A. Shayman, Bobby BhattacharjeeUniversity of Maryland. College Park MD 20742. USA Email: {tguvenQeng. kcrQcs, hyonglaQeng. shayman@eng. bobby@cs}.umd.ed
Maryland - ECE - 04
Convergence results for ant routingJoon-Hyuk Yoo, Richard J. La and Armand M. Makowskiare neighbors of router r (r = 1, . . . , R). Router r maintains a probabilistic routing table with a separate vector entry (d, (i, pi ), i Nr ) for each host de
Maryland - ECE - 16
DISTRIBUTION OF PATH DURATIONS IN MOBILE AD-HOC NETWORKS PALMS THEOREM AT WORKYijie Han, Richard J. La, and Armand M. Makowski Department of ECE and ISR University of Maryland, College Park hyijie@eng.umd.edu, {hyongla,armand}@isr.umd.eduABSTRACT
Maryland - ECE - 05
Differentiated Traffic Engineering for QoS ProvisioningVahid Tabatabaee, Bobby Bhattacharjee, Richard J. La, Mark A. Shayman University of Maryland, College Park, MD 20742, USA Email: {vahid@eng, bobby @cs, hyongla@eng. shayrnan@eng}.umd.eduAbstra
Maryland - CSCAMM - 05
Inverse hyperbolic problems with the boundary data on the part of the boundary. G.Eskin, Department of Mathematics, UCLA.High Frequency Wave Propagation University of Maryland September 19, 20051Second order hyperbolic equation. Consider a hyper
Maryland - SOCY - 239
Honors 239T: Revolutions in American Family Life Fall 2005 University of Maryland College Park Professor: Suzanne Bianchi Office: 4131 Art-Sociology Phone: 301-405-6409 E-mail: bianchi@umd.edu Fax: 301-405-5743 Class Hours: MW 2:00-3:15pm Class Locat
Maryland - SOCY - 637
University of MarylandDepartment of SociologySOCIOLOGY 637: THE CHANGING U.S. LABOR FORCE Fall 2003 Instructor: Time/Location: Office Hours: Office: Phone: E-mail: Dr. Suzanne Bianchi T 12:30-3:10pm in ASY 4114 W 1:30-2:30pm (and by appointment)