585 Pages

#### trans1

Course: MATH 124, Fall 2008

School: Boise State

Word Count: 135166

Rating:

###### Document Preview

in JAW.DAT the save set "JAW STAT CATALOG" contains the "Microfiche Copy of the Data Base for the Statistical Test Item Collection System." The information found in this file is also stored on microfiche in the Office of Biometrics. The file has been divided into several parts for ease of use. JAW01.DAT contains the first 300 lines of the file; JAW02.DAT contains the next 300 lines; etc....

##### Unformatted Document Excerpt
Coursehero >> Idaho >> Boise State >> MATH 124

Course Hero has millions of student submitted documents similar to the one
below including study guides, practice problems, reference materials, practice exams, textbook help and tutor support.

Course Hero has millions of student submitted documents similar to the one below including study guides, practice problems, reference materials, practice exams, textbook help and tutor support.

Find millions of documents on Course Hero - Study Guides, Lecture Notes, Reference Materials, Practice Exams and more. Course Hero has millions of course specific materials providing students with the best way to expand their education.

Below is a small sample set of documents:

Boise State - MATH - 124
__*Q#2895-2 (1338) Based upon item submitted by L. J. Tashman - U. of Vermont Short Answer SAMPLE SAMPLING STATISTICS 0 Q: Define what is meant by a sample. Does it always provide a good representation of the population? 0 A: A sample is a small
Boise State - MATH - 124
rx qx x o x F ~ } y rx qx x o x F | { y f R V Y c d Y ` Q V R P S R n e Y a b e ` R c Y W U a i b e R Q W ` W W b Q W R j U W ` f R c Y WU a i b e SU R Q W R V b R S j R c ` W W a b P R P ~} y S ` e c a b R c Y WU
Boise State - MATH - 124
Wi gYqW Y X W ` W a `h q X d i qq W Vq W g ph i W s e u | W i d d Vq p g d V i W W g ph i W X Vq Y W X d x i ch a `h i g W a Y X W d q c i W W V c c W a d c W X d x W X W V U s rh p Y X W V c d c W h X r y W h c Y W X W d c | W i d d
Boise State - MATH - 124
y y y j qt w z ~ j qt w z ~ d qt w z s v r { o t r y h y g f q t w z r qy ~ r r v t { ~ x w t q t w z r qy r r v t { ~ x w t q t w z
Boise State - MATH - 124
\$ &quot; uVduiwdAxedP 'x{wuxPu w&amp;{w5VxushSxhx xVxxuxAu&amp;u{dwuyu w{wdw{xdP ww{ui
Washington - M - 120
id no 13 46 111 269 331 332 335 342 352 432 434 536 569 586 661 681 723 727 751 757 805 807 845 902 957 960 973 1059 1142 1153 1176 1176 1253 1310 1399 1425 1435 1624 1801 1811 1884 1893 1962 2322 2338 2339 2433 2888 3317 3347 3552 3577 3618 3687 377
Washington - M - 120
student id no 13 46 111 269 331 332 335 342 352 432 434 536 569 586 661 681 723 727 751 757 805 807 845 902 957 960 973 1059 1142 1153 1176 1176 1253 1310 1399 1425 1435 1624 1801 1811 1884 1893 1962 2322 2338 2339 2433 2888 3317 3347 3552 3577 3618
Boise State - MATH - 124
June 5, 2007Islamic Mathematics and Mathematicians11 IntroductionThe torch of ancient learning passed first to one of the invading groups that helped bring down the Eastern Empire. Within a century of Muhammad's conquest of Mecca, Islamic armies
Boise State - MATH - 124
e. (2), (3), and (4) 0 A: e. (2), (3), and (4) 0T= 2 Comprehension D= 4 General _ _ Q#2196-2 (3315) Item is still being reviewed Multiple Choice Indicate which of the given is an invalid explanation for the occurrence of a large value for the t-test
Boise State - MATH - 124
Lecture 1January 8, 2007Sung Y. SongIOWA STATE UNIVERSITY CprE/InfAs/Math 533 CRYPTOGRAPHYL-1:Course IntroductionInstructor: Office:Sung Y. Song Assoc. Prof. of Mathematics 442 Carver Hall Phone: Fax: 515 - 294 - 5866 515 - 294 - 5454
Boise State - MATH - 124
Lecture 2January 10, 2007Sung Y. SongIOWA STATE UNIVERSITY CprE/InfAs/Math 533 CRYPTOGRAPHYL-2:Introduction: modern cryptographyEfficient algorithm Need an efficient encryption and decryption algorithms in order to compute 128-bit block s
Boise State - MATH - 124
Lecture 3January 12, 2007Sung Y. SongIOWA STATE UNIVERSITY CprE/InfAs/Math 533 CRYPTOGRAPHYL-3:Integers, Modular ArithmeticDivision Z := { , -2, -1, 0, 1, 2, }, Z+ := {1, 2, 3, }, integerspositive integers.Division Z := { ,
Boise State - MATH - 124
Lecture 4January 17, 2007Sung Y. SongIOWA STATE UNIVERSITY CprE/InfAs/Math 533 CRYPTOGRAPHYL-4:Modular ArithmeticRecall a and b are integers. For b &gt; 0, there exist q, r Z such that a = bq + r where 0 r &lt; b.Recall a and b are integer
Boise State - MATH - 124
Lecture 5January 19, 2007Sung Y. SongIOWA STATE UNIVERSITY CprE/InfAs/Math 533 CRYPTOGRAPHYL-5:Modular Arithmetic IIRecall Let a, b and m be integers. a b 1, gcd(a, b) = gcd(b, a%b).Recall Let a, b and m be integers. a b 1, gcd(a,
Boise State - MATH - 124
Lecture 6January 22, 2007Sung Y. SongIOWA STATE UNIVERSITY CprE/InfAs/Math 533 CRYPTOGRAPHYL-6:More on Modular ArithmeticRecall: Let gcd(m1 , m2 ) = 1. one-to-one correspondence f : Zm1 m2 Zm1 Zm2Then thedefined by f (x) = (x%m1 , x
Boise State - MATH - 124
Lecture 7January 24, 2007Sung Y. SongIOWA STATE UNIVERSITY CprE/InfAs/Math 533 CRYPTOGRAPHYL-7:Theorems by Lagrange, Fermat, Wilson, and EulerRecall: be ThenLet the prime factorization of n n=e1 e2 p1 p2 ek pk .(n) = (pe1 ) (pe2
Boise State - MATH - 124
Lecture 8January 26, 2007Sung Y. SongIOWA STATE UNIVERSITY CprE/InfAs/Math 533 CRYPTOGRAPHYL-8:Classical Ciphers Lagrange, Euler, Fermat's little, and Wilson's theorems Class of classical ciphers Affine ciphers Permutation ciphers Hil
Boise State - MATH - 124
Lecture 9January 29, 2007Sung Y. SongIOWA STATE UNIVERSITY CprE/InfAs/Math 533 CRYPTOGRAPHYL-9:More on Classical Ciphers Permutation cipher Hill cipher Vign`re cipher ePermutation ciphers Let = 2, 8, 4, 7, 1, 3, 5, 6 be a permutation
Boise State - MATH - 124
Lecture 10January 31, 2007Sung Y. SongIOWA STATE UNIVERSITY CprE/InfAs/Math 533 CRYPTOGRAPHYL-10:Breaking Polyalphabetic CiphersBlock substitution: polyalphabetic Let E1 , E2 , . . . , Em be distinct simple substitution ciphers. Divide pl
Boise State - MATH - 124
Lecture 11Feb 2, 2007Sung Y. SongIOWA STATE UNIVERSITY CprE/InfAs/Math 533 CRYPTOGRAPHYL-11:Breaking Polyalphabetic Ciphers Elementary Probability ReviewHow to determine the key K = k1 k2 km ? For given i (1 i m), let f0 , f1 , . . .
Boise State - MATH - 124
Lecture 12February 5, 2007Sung Y. SongIOWA STATE UNIVERSITY CprE/InfAs/Math 533 CRYPTOGRAPHYL-12: Shannon's Information Theory: Entropy Conditional Probability Joint Probability Entropy Conditional Entropy Joint EntropyConditional pro
Boise State - MATH - 124
Lecture 13February 7, 2007Sung Y. SongIOWA STATE UNIVERSITY CprE/InfAs/Math 533 CRYPTOGRAPHYL-13: Entropy and Cryptography1 Conditional entropy Key equivocation Unicity distance2Joint entropy The joint entropy of X and Y is H(X, Y) =
Boise State - MATH - 124
Lecture 14February 7, 2007Sung Y. SongIOWA STATE UNIVERSITY CprE/InfAs/Math 533 CRYPTOGRAPHYL-14: Cryptological Use of Entropy1 Key equivocation Entropy of natural language Unicity point2Entropy of Texts Example. Consider a language
Boise State - MATH - 124
Lecture 15February 12, 2007Sung Y. SongIOWA STATE UNIVERSITY CprE/InfAs/Math 533 CRYPTOGRAPHYL-15: Cryptological Use of Entropy1 Key equivocation Entropy of natural language Unicity point2The entropy of a natural language For any nat
Boise State - MATH - 124
CryptographyLecture 16: Advanced Encryption StandardKleiman ElizabethAES Advanced Encryption Standard Replacement of DES Algorithm requirements: Block size: at least 128 Key size: 128, 192 and 256 Symmetric block cipherEvaluation Criter
Boise State - MATH - 124
CryptographyLecture 19: Advanced Encryption StandardKleiman ElizabethRijndaelBoth the state and round key can be represented as : a00 a10 A= a20 a 30 a01 a11 a21 a31 a02 a12 a22 a32 a03 a13 a23 a33 Wereaijis a byteDescription
Boise State - MATH - 124
Lecture 22February 28, 2007Sung Y. SongIOWA STATE UNIVERSITY CprE/InfAs/Math 533 CRYPTOGRAPHYL-22: DES and Mode of Encryptions1Description of DES DES is a 16-round Feistel cipher having Block length: 64 bits Key length: 64 bits; a 56-bi
Boise State - MATH - 124
CryptographyLecture 364/9/2007Sung Y. SongIOWA STATE UNIVERSITYMath/CprE/InfAs 533 CRYPTOGRAPHYL-36Digital Signature Schemes1ElGamal cryptosystem Choose a large prime p ( 768 bits) and a primitive element g mod p, a random number a
Boise State - MATH - 124
CryptographyLecture 344/5/2006Sung Y. SongIOWA STATE UNIVERSITYMath/CprE/InfAs 533 CRYPTOGRAPHYL-34Digital Signature Standards1DSS: set-up p: a 512-bit prime q: a 160-bit prime dividing p - 1 g: a q-th primitive root of 1 mod p; g
Boise State - MATH - 124
CryptographyLecture 384/13/2007Sung Y. SongIOWA STATE UNIVERSITYMath/CprE/InfAs 533 CRYPTOGRAPHYL-38Cryptographic Hash FunctionsReference: J. L. Massey, Cryptography: Fundamentals and Applications1Intruders-in-the-middle attack for
Boise State - MATH - 124
CryptographyLecture 394/16/2007Sung Y. SongIOWA STATE UNIVERSITYMath/CprE/InfAs 533 CRYPTOGRAPHYL-39Secure Hash Signature Standard**FIPS, Pub. 180-2, Secure Hash Standard1Secure hash signature standard (SHS) x SHA 160-bit h(x) DSA