# Register now to access 7 million high quality study materials (What's Course Hero?) Course Hero is the premier provider of high quality online educational resources. With millions of study documents, online tutors, digital flashcards and free courseware, Course Hero is helping students learn more efficiently and effectively. Whether you're interested in exploring new subjects or mastering key topics for your next exam, Course Hero has the tools you need to achieve your goals.

3 Pages

### mat092 ec ch6

Course: MAT 092, Fall 2008
School: Pima CC
Rating:

#### Document Preview

Sorry, a summary is not available for this document. Register and Upgrade to Premier to view the entire document.

Register Now

#### Unformatted Document Excerpt

Coursehero >> Arizona >> Pima CC >> MAT 092

Course Hero has millions of student submitted documents similar to the one
below including study guides, practice problems, reference materials, practice exams, textbook help and tutor support.

Course Hero has millions of student submitted documents similar to the one below including study guides, practice problems, reference materials, practice exams, textbook help and tutor support.
There is no excerpt for this document.
Find millions of documents on Course Hero - Study Guides, Lecture Notes, Reference Materials, Practice Exams and more. Course Hero has millions of course specific materials providing students with the best way to expand their education.

Below is a small sample set of documents:

Pima CC - MAT - 092
Pima CC - MAT - 092
Radical Supplement for Math 92Objective Simplify and perform operations on numerical square-roots. Square Roots In prior chapters, you have squared numbers such as 22=4. Now we are going to reverse this operation and that is called finding a numbers
Pima CC - MAT - 092
Copyright 2006 Pearson Education, Inc. Publishing as Pearson Addison-WesleySlide R- 1RElementary Algebra ReviewR.1 Introduction to Algebraic Expressions R.2 Equations, Inequalities, and Problem Solving R.3 Introduction to Graphing R.4 Polyno
W. Kentucky - CIT - 470
W. Kentucky - CSC - 660
CSC 660: Advanced OSSchedulingCSC 660: Advanced Operating SystemsSlide #1Topics1. Basic Concepts 2. Scheduling Policy 3. The O(1) Scheduler 4. Runqueues 5. Priority Arrays 6. Calculating Priorities and Timeslices. 7. Scheduler Interrupts. 8.
W. Kentucky - CIT - 383
North-West Uni. - CS - 340
Welcome to CS 340 Introduction to Computer NetworkingOve w rvieourseAdm inistrativeTrivia C rne cture I nte t Archite twork Protocols Ne twork Edge Ne y m tworks A taxonom of com unication neSome slides are in courtesy of J. Kurose and K. R
North-West Uni. - CS - 340
Re w of Pre vie vious Le ctureourseAdm inistrativeTrivia C rne cture I nte t Archite twork Protocols Ne twork Edge Ne y m tworks A taxonom of com unication neSome slides are in courtesy of J. Kurose and K. RossOve w rviee Hom work 1 out,
North-West Uni. - CS - 340
Application laye r Ele ctronic Mail r S MTP, POP3, I MAP DNS P2P filesharing1Ele ctronic MailThre m com nts: e ajor pone use age r nts m se rs ail rve sim m transfe protocol: S ple ail r MTPm ail se r rve use r age ntoutgoing m ssageque
North-West Uni. - CS - 340
Ove w rvie S ocke program ing with t mTC P S ocke program ing with t m UDP Building a We se r b rve1S t program ing ocke mGoal: le how to build clie arn nt/se r application that com unicateusing rve m socke ts S t API ocke introduce in BS
North-West Uni. - CS - 340
Ove w rvie S ocke program ing with t mTC P S ocke program ing with t m UDP Building a We se r b rve1S t program ing ocke mGoal: le how to build clie arn nt/se r application that com unicateusing rve m socke ts S t API ocke introduce in BS
North-West Uni. - CS - 340
EECS 340Introduction to NetworkingWinter 2009Introduction to NetworkingSyllabusWeb Pagehttp:/www.cs.northwestern.edu/~akuzma/classes/CS340-w09/InstructorAleksandar Kuzmanovic L457 Technological Institute 2145 Sheridan Road 847-467-5519 ak
Michigan State University - SS - 252
Review Session Answer Key 04/30/091. Fill in the following boxes with the appropriate reagents or products. (2 points each)O1. NaOH(xs), I2 (xs) H2O 2. H3 O+O I IO1. NaOH (xs), I2 (xs) H2O 2. H3O+O OHO OH1. PBr3, Br2 2. H2OBrO O
Michigan State University - SS - 252
CEM252, Spring 2009 Midterm #3CEM 252, Spring 2009 (Sections 13-24) MWF 11:3012:20 pm Midterm #3 April 17, 2009Name:_ PID: _ Section:_ TA: _This is a closed book and note examination. If boxes are provided for your answers, only what is written
Michigan State University - SS - 252
CEM252, Spring 2009 Midterm #3CEM 252, Spring 2009 (Sections 13-24) MWF 11:3012:20 pm Midterm #3 April 17, 2009Name:_ PID: _ Section:_ TA: _This is a closed book and note examination. If boxes are provided for your answers, only what is written
Michigan State University - SS - 252
CEM252, Spring 2009 Midterm #3CEM 252, Spring 2009 (Sections 13-24) MWF 11:3012:20 pm Midterm #3 April 17, 2009Name:_ PID: _ Section:_ TA: _This is a closed book and note examination. If boxes are provided for your answers, only what is written
Michigan State University - SS - 252
CEM252, Spring 2009 Midterm #3CEM 252, Spring 2009 (Sections 13-24) MWF 11:3012:20 pm Midterm #3 April 17, 2009Name:_ PID: _ Section:_ TA: _This is a closed book and note examination. If boxes are provided for your answers, only what is written
UCF - EGN - 3365
NYU - DY - 387
Positivity of IntersectionsApril 2, 2008Abstract Notes of a lecture by Dusa McDuff on positivity of intersections of J-holomorphic curves in dimension 4.There are 3 places where one needs information on local structure of Jholomorphic curves: 1.
NYU - JSS - 344
Parshas Ha'azinuTable of Contents Ha'azinu1. 2. 3. 4. 5. 6. Parsha/Haftorah Summary Echoes from Heaven When The Maps. Yom Kippur/Ha'azinu The Power of Song Sfas Emes Rabbi Aron Tendler Rabbi M. Kamenetzky Rabbi Yissochar Frand Rabbi Biggs Rabbi Aa
Youngstown - M - 2673
! #&quot;! \$ \$%\$ \$ \$ \$ \$ \$ \$\$ \$ \$ \$\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$\$ \$ \$ \$ \$ \$\$ \$ \$ \$ \$ \$ \$ \$ \$ \$\$ \$ \$\$ \$ \$ \$ \$ \$ \$ \$ \$ &amp; \$ \$ \$ \$ \$ \$ \$!&quot;# \$ \$ % \$ !&quot;# \$ \$ % \$ &amp; '( %) *+ 0 &amp;, )% % , ', 1 )( %,% . 2/
Youngstown - M - 2673
O restart:with(plots):with(student):Digits := 10; Digits := 10 Maple workshheet for p. 847, ex 21-28 ex21 O implicitplot3d(x^2 + 4*y^2+9*z^2 = 1,x=-1.1,y=-1.1,z=-1. .1,axes = boxed);(1)-1.0 -0.5 0.0 1.0 0.5 0.0 z -0.5 0.5 -1.0 1.0 0.0 x -0.5 0.5
Youngstown - M - 2673
O restart:with(plots):with(student): O ? `?` O implicitplot3d y^2 C x^2 C 4\$ z^2 = 10, x =K4 .4, y =K4 .4, z =K2 .2, axes = boxed ;:(1)-4 -2 y 0 2 1 z 0 0 x 2 -2 4 -2 2 4 -4-1Oimplicitplot3d 4\$ y ^ 2 K 4\$ x ^ 2 C z ^ 2 = 4, x =K2 .2, y =K3
Youngstown - M - 2673
O restart : O O with plots : with student : ; O a d evalf 2a := 1.570796327 (1)O plot1 d implicitplot3d x C y = a, x = 0 .a, y = 0 .a, z = 0 . a, color = yellow : O g d x, y / sin x C y ;g := x, y /sin x Cy p := x, y /0 (2) (3)O p d x, y / 0;
Youngstown - M - 2673
MATH 2673Calculus III: Exam 3 NAME4/16/2009Note: Final Exam is Tuesday of nals week.Project due last day of class. Complete the exam as a Malpe Lab1. Consider the region R of the solid in the rst octant bounded by the cylinder of radius one w
Youngstown - M - 2673
O restart: O with (student):with(plots): with(linalg): O f:=(x,y)-&gt; ln( e^x + e^y); x y f := x, y /ln e Ce O Diff(f(x,y),x) +Diff(f(x,y),y)=diff(f(x,y),x) +diff(f(x,y),y); x y v v e ln e e ln e x y x y ln e Ce C ln e Ce = x C x y y vx vy e Ce e Ce O
Youngstown - M - 1571
MATH 1571Calculus I: Sample Exam 44/16/2009Note: Final Exam is Monday of nals week.. Graph the region and set up the integral and evaluate. The indicated numbers are problems from the nal exam review guide. 1. The area bounded by the curves y
Youngstown - M - 1571
O restart:with(plots):with(student): ex1 O F:=plot(4-x^2,x=-1.4,color=red):G:=plot(-3*x,x=-1.4,color = blue):H:=plot(3,x=-1.1,color = green): O display(F,G,H);2K 1 K 2012 x34K 4K 6K 8K 10K 12horizontal strips O x1:=sqrt(4-y);
Youngstown - M - 2673
Name Math 2673 9/15/2006 Sample Test 1 1. Let b =&lt; 1, 1, 1 &gt; and a =&lt; 1, 0, 1 &gt;. i. Express b as b = b1 + b2 where b1 is parallel to a and b2 is orthogonal to a ii. Sketch the appropriate triangle labeling all the vectors mentioned above. iii. Find t
Youngstown - M - 2673
Name Lab III, Math. 2673Due Nov. 1The purpose of this problem is to further motivate the use of Maple in doing rather complicated max/min problems. Please make the graph. 1. Find local max / min and saddle points (if any) for each of the followin
Youngstown - M - 2673
&gt;restart:with( student); distance, equate, integrand, intercept, intparts, leftbox, leftsum, makeproc, middlebox, middlesum,[ D, Diff, Doubleint, Int, Limit, Lineint, Product, Sum, Tripleint, changevar, completesquare, midpoint, powsubs, rightbox
Youngstown - M - 2673
Math 2673, Sample exam 3Nov,20061.) Find the local maximum and minimum values and saddle points of the given function. f (x, y) = 3xy x2 y xy 2 3.) Find the all critical points for the following function and label them as local maximum and mini
Youngstown - M - 2673
&gt; restart:with(Student[VectorCalculus]):with( plots): with(student):Warning, the assigned names &lt;,&gt; and &lt;|&gt; now have a global binding Warning, these protected names have been redefined and unprotected: *, +, -, ., D, Vector, diff, int, limit, series
Youngstown - M - 2673
&gt; restart;with(plots):with(student):with(Student[VectorCalculus]):Warning, the name changecoords has been redefined Warning, the assigned names &lt;,&gt; and &lt;|&gt; now have a global binding Warning, these protected names have been redefined and unprotected:
Youngstown - M - 2673
0101
Youngstown - M - 2673
&gt; restart:with(plots):with(student):Warning, the name changecoords has been redefined&gt; plot3d(4*sin(theta),theta=0.2*Pi,z=-1.1, coords=cylindrical, style=patch,axes = boxed);&gt; &gt; plot3d(2/(cos(phi), theta=0.2*Pi, phi=0.Pi/2, coords=spherical,colo
Youngstown - M - 2673
&gt; restart:with(plots):with(student):Warning, the name changecoords has been redefined&gt; # this is a graph of problem 1&gt; # the difficulty with the snocone graph is that Maple orders the coord in sphereical coords as (rho, theta,phi) while the text
Youngstown - M - 2673
&gt; restart:with(plots):with(student):Warning, the name changecoords has been redefined&gt; # problem 1&gt; pl1:=plot3d( 3*cos(theta), theta=0.Pi,z=0 . 5,coords=cylindrical,color = red, axes=boxed): &gt; pl2:=plot3d( 5-x, x = 0 . 4, y= -2 . 2,color = blue,
Youngstown - M - 2686
! ! ! ! + &quot; = #\$ + % % = + =&quot;##\$ +++ ! ! # # # # &quot; &quot; #\$ #\$+=++&amp;'() *# # #+, + -, &amp; . # #+ /-&amp; . / - '* , '-+ &amp; . * -+ ' '() *#&amp; *# # '+'() *# # #+ **'+* + / + / + ++*)+ '++
Youngstown - M - 2686
! ! ! &quot; &quot; # \$ ! % ! &amp; + &quot; !' (# ' # ' (# ! ' #(# # (#! ! ! !! !(#)##)!! ! + + =+= + + !&quot;#\$%&amp;' ( (# (# # # (# (# # # ) * )(+ ' '+ )+ ( ! ! ! !+! '* ! '* ! !(# #) )
Youngstown - M - 1571
Name Math 1571April 26, 2006 Exam 4I. Integrate each of the following: 1. 2. 3. 2 dx is: (x + 3)3 (4x2 2)4 6x dx is: x4 + 6 dx . x284.312 x dx5. 6. 7. 8. 9. Dxdx (x + 4)2 x x2 1 dx sin3 (x) cos(x) dx 2x + 1 dx + x + 1)2 (t3 + 1) dt
Youngstown - M - 2673
Math. 2673 1. Evaluate as indicated: a. Compute the limit along any line and state any conclusion: x2 y 2 lim(x,y)&gt;(0,0) 2 x + 2y 2 b. Compute the limit along any line and state any conclusion: 2xy lim(x,y)&gt;(0,0) 2 x + y2 y 2. If u = x , show that x
UCF - EEL - 3657
Youngstown - M - 3720
!&quot; + # &quot; \$ %&amp; ' ( ) &amp;' ( )! ! !'*!&amp; &quot;!&amp;' ! !*!&amp; &quot;!&amp;&quot; &amp;# ' ( &quot; . &quot; ' ( ) + ! \$# % ' ( ) + + ! % # # ' ) , ' ' ( \$# % # % # / 0 &quot; ! &quot;&amp;'')! ) '&quot; 0, ( )( + ) ! '* &quot; &quot; ' &amp; , '
Youngstown - M - 3720
! ! \$ '! '!&quot; #&quot;# &amp; ! ! ! !! &quot;# % ! !\$ %! %! %! &amp; &amp;%!( \$ /!&amp;)# ** + , , ! &quot;, &amp; 1 ) # 2 ! &amp; &amp; ! 1 / %! 1%( % ) %! , # 2 0.'! '! \$ '!&amp;! % ! ! / ) # , , 0 / 1 ! / %! ! 1 %! ! ! % %!* , # 2 ! ! &amp; !
Youngstown - M - 3270
NameFinal Exam Math 3720 May 3, 2004I.) a.) Let A be an nxn matrix. Prove that N ull(A) which is {xRn |Ax = 0} is a subspace of Rn .b.) Let A be an nxn. Define TA on Rn by x :- A x for x Rn . Prove that TA is a Linear Transformation.II.) Let
Youngstown - M - 3720
NameFinal Exam Math 3720 May 3, 2004I.) a.) Let A be an nxn matrix. Prove that N ull(A) which is {xRn |Ax = 0} is a subspace of Rn .b.) Let A be an nxn. Define TA on Rn by x :- A x for x Rn . Prove that TA is a Linear Transformation.II.) Let
Youngstown - M - 3720
.5 Sept 30,2005 Math. 3720 1. Let A be an nxn matrix. a. Dene the inverse of A. b. Prove that if A has an inverse then it must be unique. 2. Let A and B be an nxn matrices. a. Dene what Ap for any integer p where p &gt; 0. b. Let 2 3 A= 2 3 and B= 3 2 6
Youngstown - M - 1571
Youngstown State University Department of Mathematics, Spring2008 Grading Policy Math 1571 Instructor: Dr. John J. Buoni Oce Hours: TTh, 8;30 - 9:00, 12:30 12:50; 3:00 3:30 Tests: There will be a four one hour exams ( counting 100 points) and a
NYU - DOCS - 6977
Youngstown - M - 1571
MATH 1571 I.Calculus I: Sample Exam 3Spring Fall 20085 1. Consider the integral 1 x2 + 1 dx Evaluate the integral by dividing the interval into 4 equal subintervals and approximate the integral by a sum.2. For f (x) = cos(x) on [0 , ], 2 div
Youngstown - M - 1571
Sample Test 3 1 0 4x(4x2 2)2 dx is: 3 2 2 x +7x +5 dx is: x2 2 3 7 2 x dx is: x 6 If f (x) = 4 t2 7 dt, then f (4) I. 1. Consider the integral 4 2 x 1 dx 1 Evaluate the integral by dividing the interval into n equal subintervals and express the
NYU - DOCS - 10419
2009 Mid-Year Spring BreakBrought to you by the Master's CollegeWhen: Time: Who: Where: RSVP:Thursday, February 26, 2009 4:30 6:30 pm All GSAS Master's Students NYU Torch Club: 18 Waverly Place By Friday, February 20, 2009 to gsas.masterscolleg
Youngstown - M - 5825
Name Math 5820 1. Prove the Sherman-Morrison formula. 2. Do p.29 Ex #7. 3. Do p.46 Ex #11. 4. Do p.49 Ex #3. 5. Do p.49 Ex #7. 6-8. Do p.51 Ex #1, 2, 3.Due Wednesday, Sept. 22 Homework Assignment I
Youngstown - M - 5825
! &quot; # &quot;! # \$ \$ # \$ # # &quot; # !# # # % # ! # &quot; # &quot; # &quot;! # &quot;! &quot;# #! &quot; ! &quot; %# #\$ \$! &quot; ! &quot;##! &quot; ! &quot; (# #&amp;&quot; ' &quot;&amp; &amp; &amp; )\$\$&amp;&quot; ' &quot;&amp; &quot;'\$ * \$ \$%&amp;&quot; ' &quot;&amp; )\$ )\$ ' )\$( \$ ' * &amp;&quot; ' &quot;&amp; \$ * \$)
Youngstown - M - 5825
! &quot; # &quot;! # \$ \$ # \$ # # &quot; # !# # # !&quot; #&amp; #' #( #) # \$&quot; % &quot;\$ &amp; &amp; !&quot; # ! # &quot; # &quot; # &quot;! # &quot;! &quot;# #% !&quot; !&quot;&amp;'( \$&quot; % &quot;\$ &quot;' # \$&quot; % &quot;\$ ' ' ) ' ' &amp;' ' ( \$&quot; % &quot;\$ ) ( \$&quot; % &quot;\$ )&quot;( # \$&quot; % &quot;\$
Youngstown - M - 5825
Homework IV Due Friday, Nov.19, 2004 1.) Let V be an n dimensional complex vector space. Prove that if T is a normal matrix on V then Range(T ) = Range(T ) 2.) Prove that If A is Hermitian on V then eA is positive denite Hermitian. 3.) Sketch in 2 t
Youngstown - M - 1548
7.1 Rational Expressions and Functions; Multiplying and Dividing91CHAPTER 7 RATIONAL EXPRESSIONS AND FUNCTIONS7.1 Rational Expressions and Functions; Multiplying and Dividing1. 2. 3. 4. 5. 6. 7. C A D B E F Replacing B with # makes the denomina
Youngstown - M - 1548
10.2 Solving Quadratic Equations by Completing the Square131CHAPTER 10 QUADRATIC EQUATIONS, INEQUALITIES, AND FUNCTIONS10.1 Solving Quadratic Equations by the Square Root Property1. 2. 3. The equation is also true for B %. Some quadratic equat
Youngstown - M - 1548
Math 1548 I. Consider the following: Max 6x + 3y subject to: x + 3y 3 3x + y 2 x 0, y 0 i.) Graph the inequalities. ii.) Solve the max problem. 2.) Max 10x + 15y subject to: 3x + 6y 48 x + 3y 21 2x + 3y 24 x 0, y 0 i.) Graph the inequalities
Youngstown - M - 1548
Name Math 1548due 1/1/2007 Take Home TestDirections: In groups of at most 2, use the software as seen on my website to solve each of the following: Record the answer 1.) Max 2x + y subject to: x + 2y 4 4x + y 16 x 0, y 0 2.) Max x + 3y subjec