# Register now to access 7 million high quality study materials (What's Course Hero?) Course Hero is the premier provider of high quality online educational resources. With millions of study documents, online tutors, digital flashcards and free courseware, Course Hero is helping students learn more efficiently and effectively. Whether you're interested in exploring new subjects or mastering key topics for your next exam, Course Hero has the tools you need to achieve your goals.

2 Pages

### disc3

Course: STAT 424, Fall 2008
School: Wisconsin
Rating:

Word Count: 394

#### Document Preview

424 Stat discussion #3 TA Oce &amp; Phone E-mail Oce hour Tao Yu 1275A MSC , 262-1577 yutao@stat.wisc.edu 1:00-2:00pm Tue. and 1:00-2:00pm Wed. Summary I. Multiple Regression: Refer to lecture notes Unit1 II. Experiments with a single factor 1. Model : Yij = i + eij or Yij = + i + eij . 2. Assumptions (a) Observations within a treatment and across all treatments are independent 2 (b) Normal assumption:Yij...

Register Now

#### Unformatted Document Excerpt

Coursehero >> Wisconsin >> Wisconsin >> STAT 424

Course Hero has millions of student submitted documents similar to the one
below including study guides, practice problems, reference materials, practice exams, textbook help and tutor support.

Course Hero has millions of student submitted documents similar to the one below including study guides, practice problems, reference materials, practice exams, textbook help and tutor support.
424 Stat discussion #3 TA Oce & Phone E-mail Oce hour Tao Yu 1275A MSC , 262-1577 yutao@stat.wisc.edu 1:00-2:00pm Tue. and 1:00-2:00pm Wed. Summary I. Multiple Regression: Refer to lecture notes Unit1 II. Experiments with a single factor 1. Model : Yij = i + eij or Yij = + i + eij . 2. Assumptions (a) Observations within a treatment and across all treatments are independent 2 (b) Normal assumption:Yij N(i , i ) i = 1, . . . , a, = ... = 2 a j = 1, . . . , ni (c) Equal variance 3. Estimates: i = yi , 2 assumption:1 = 2 2 ij = yij yi HA :not all i are equal 4. Hypothesis H0 : 1 = 2 = ... = a 5. Notations a ni a ni SST = i=1 j=1 a (xij x )2 = i=1 j=1 a 2 (xij )2 (x )2 N SStrt = i=1 a ni ( x ) = x i=1 ni (x )2 1 2 (xi ) ni N a SSE = i=1 j=1 (xij xi ) = i=1 2 (ni 1)s2 i 6. Relationship: SST = SSE + SStrt 7. ANOVA table Source Treatment Error Total where N = a i=1 df a1 N a N 1 SS SStrt SSE SST MS MStrt =SStrt /(a 1) MSE = SSE /(N a) ni M Strt M SE 8. Test statistics : F = 1 9. P-value : P (F Fa1,N a ) 10. Properties of the F-test: If all the assumptions the for model are satised, say, 2(a),(b),(c) are all satised, given any value of (type I error), the F-test has the smallest probability of a type II error. The F-test is robust against the violations of the normality and constant variance but not robust against the leak of independence. Examples 1. Hints for hwk2 question 3 and 4. 2. An experiment was performed to study the eect of polypropylene bers on the compressive strength of concrete. Fifteen concrete cubes were made and randomly assigned to ve levels of ber content (0, 0.25, 0.50, 0.75 and 1%), with three cubes to each level. The mean and standard deviations of the strength data are shown in Tabl...

Find millions of documents on Course Hero - Study Guides, Lecture Notes, Reference Materials, Practice Exams and more. Course Hero has millions of course specific materials providing students with the best way to expand their education.

Below is a small sample set of documents:

Wisconsin - STAT - 424
Stat 424 discussion #5TA Office &amp; Phone E-mail Office hour Tao Yu 1275A MSC , 262-1577 yutao@stat.wisc.edu 1:002:00pm Tue and 1:002:00pm WedSummary Randomized Block Design (RBD): Model: Yij = + i + j + ij , i = 1, , a, j = 1, , b. Assump
Wisconsin - STAT - 424
Stat 424 discussion #7TA Oce &amp; Phone E-mail Oce hour Tao Yu 1275A MSC , 262-1577 yutao@stat.wisc.edu 1:002:00pm Tue and 1:002:00pm WedSummary BIBD design: Treatment #: t; size: r. Block #: b; size: k. Each pair of treatments appear in the same
Wisconsin - STAT - 424
Solution for Stat424 hwk83.10. The largest | t PSE | is 1.87 for the effect B. Using interpolation, the p value=0.0767. So for any 0.0767 , the IER version of Lenth's method will declare at least one effect significant. 3. 16. (a) No, the part wid
Caltech - CS - 219
%!PS-Adobe-2.0 %Creator: dvips(k) 5.92b Copyright 2002 Radical Eye Software %Title: prob1.dvi %Pages: 2 %PageOrder: Ascend %BoundingBox: 0 0 612 792 %DocumentFonts: CMBX12 CMR12 CMMI12 CMSY10 MSBM10 CMR8 CMSY8 CMMI8 %+ CMEX10 CMSY6 %EndComments %DVIP
Caltech - CS - 219
%!PS-Adobe-2.0 %Creator: dvips(k) 5.86 Copyright 1999 Radical Eye Software %Title: prob2.dvi %Pages: 2 %PageOrder: Ascend %BoundingBox: 0 0 612 792 %EndComments %DVIPSWebPage: (www.radicaleye.com) %DVIPSCommandLine: dvips -o prob2.ps prob2 %DVIPSPara
Caltech - CS - 219
%!PS-Adobe-2.0 %Creator: dvips(k) 5.86 Copyright 1999 Radical Eye Software %Title: prob3.dvi %Pages: 2 %PageOrder: Ascend %BoundingBox: 0 0 612 792 %EndComments %DVIPSWebPage: (www.radicaleye.com) %DVIPSCommandLine: dvips -o prob3.ps prob3 %DVIPSPara
Caltech - CS - 219
%!PS-Adobe-2.0 %Creator: dvips(k) 5.86 Copyright 1999 Radical Eye Software %Title: prob4.dvi %Pages: 3 %PageOrder: Ascend %BoundingBox: 0 0 612 792 %EndComments %DVIPSWebPage: (www.radicaleye.com) %DVIPSCommandLine: dvips -o prob4.ps prob4 %DVIPSPara
Caltech - CS - 219
%!PS-Adobe-2.0 %Creator: dvips(k) 5.86 Copyright 1999 Radical Eye Software %Title: prob6.dvi %Pages: 2 %PageOrder: Ascend %BoundingBox: 0 0 612 792 %EndComments %DVIPSWebPage: (www.radicaleye.com) %DVIPSCommandLine: dvips -o prob6.ps prob6 %DVIPSPara
Berkeley - ME - 107
Water Rocket Laboratory, Spring 2007UC Berkeley, Dept. Mechanical Eng.Equations of motion for the water rocket wheelFabrizio Bisetti11Department of Mechanical Engineering, University of California at Berkeley, Berkeley, California 94720-1740,
Berkeley - ME - 107
YCP - EGR - 100
EGR 100 - EPADS I Course SyllabusFall Semester, 2008 8:00 9:50 Mon, Wed, Fri Instructors: Dr. Timothy J. Garrison 102 KEC 815-1710 Office Hours: M&amp;W 10-11, T&amp;R 10:00-11:30 Dr. Stephen Kuchnicki 104 KEC 815-1547 Office Hours: M&amp;R 10:30-11:30, W 10-1
YCP - ME - 250
ME 250 - STATICS Lecture SyllabusFall Semester, 2008 1:00 1:50 Mon, Wed, Fri KEC 127 10:00 11:50 MK 228 or 2:00 3:50 Fri KEC 127 Instructor: Dr. Timothy J. Garrison 106 McKay 815-1710 garrison@ycp.edu M &amp; W 10:00 11:00, T &amp; R 10:00 11:30 Web Si
Berkeley - ASTRO - 00324561
Berkeley - ASTRO - 00324561
Source Contamination: 1.56E-06 +/- 9.6E-08 cts/s
Berkeley - ASTRO - 00324561
output00324561000_999/sw00324561000xpcw3po_cl.evtoutput00324561001_999/sw00324561001xpcw3po_cl.evtoutput00324561002_999/sw00324561002xpcw3po_cl.evtoutput00324561003_999/sw00324561003xpcw3po_cl.evtoutput00324561004_999/sw00324561004xpcw3po_cl.evt
Berkeley - ASTRO - 00324561
# tmin tmax 0.11013500 1439.66 [ksec];instrument XRT;exposure 200882.47;xunit kev;bintype counts0.000000 0.010000 0.000000 0.0000000.010000 0.020000 0.000000 0.0000000.020000 0.030000 0.000000 0.0000000.030000 0.040000 0.00000
Berkeley - ASTRO - 00324561
SIMPLE = T / file does conform to FITS standardBITPIX = 8 / number of bits per data pixelNAXIS = 0 / number of data axesEXTEND = T / FITS dataset may contain extensio
Berkeley - ASTRO - 00324561
# Ep lEiso71.063 121.26873.120 121.20879.553 121.49681.910 121.48982.894 121.40384.284 121.31685.148 121.58785.911 121.65187.081 121.35387.127 121.35887.953 121.47088.851 121.42389.178 121.56889.854 121.49990.511 121.43790.782 121.599
Berkeley - ASTRO - 00324561
# Ep lNiso71.080 136.37473.188 136.08279.606 136.70881.961 136.69082.919 136.39584.308 136.08785.172 136.15885.935 137.06587.105 136.12587.151 136.13887.977 136.45488.865 136.31989.193 136.78089.868 136.57390.525 136.37790.797 136.060
Berkeley - ASTRO - 00324561
#file=swb15-350lc.txt dt=1.0 tstart=-2.485 tstop=7.595#t90 dt90 t50 dt50 rt90 drt90 rt50 drt50 rt45 drt45 tav dtav tmax dtmax trise dtrise tfall dtfall cts cts_err pk_rate dpk_rate band 9.000 0.614 7.000 0.816 8.000 0.
Harvard - GENETICS - 201
Genetics 201 2008 Problem Set 3 Due at start of class on Monday November 17. Please turn in answers for all problems. No late problem sets will be accepted. 1. You have joined a Drosophila melanogaster lab and you are interested in studying fly pigme
Harvard - GENETICS - 201
Genetics 201 2008 Problem Set 4 Due at start of class on Friday December 12. Please turn in answers for all problems. No late problem sets will be accepted. 1. You are studying the genetics of the slime mold Dictyostelium discoideum. &quot;Dicty&quot;, as it i
Harvard - GENETICS - 201
Genetics 201 2008 Problem Set 1 Solutions 1a. The F1 phenotypic ratio is 1 albino: 2 gray: 1 black, suggesting that only one gene is involved, the two parents are heterozygotes, and the gray fur color is a result of incomplete dominance. Using the al
Harvard - GENETICS - 201
! Genetics 201 2008 Problem Set 4 Solutions 1a. Nutrient starvation -! pspR -! (agg A, aggB) -! pspX -! spore formation You cannot determine whether the middle steps in the pathway are aggA ! aggB or aggB ! aggA. 1b. You would construct an aggAD aggB
Harvard - GENETICS - 201
Genetics 201 Extra Yeast ProblemsThese problems are NOT required, and are provided to help those students who wish additional problem solving practice. Please note that as the content of the course lectures changes from year to year, these problems
Harvard - GENETICS - 201
Genetics 201 Solutions to Extra Yeast Problems1a). To determine if the two genes are linked to each other, just determine if PD = NPD. If yes, then they are unlinked. If PD &gt; NPD, then the markers are linked. To determine the distance between linked
Harvard - GENETICS - 201
Genetics 201 Solutions to Extra Phage and Bacteria Problems1. a. i. 3 Ade+ spores - white colonies : 1 Ade- spore - red colony ii. In the tetrads that show gene conversion (those that are 3:1), 50% of the tetrads should contain spores in which LOCA
Harvard - GENETICS - 201
Genetics 201 Extra C. elegans problems1). The nematode Caenorhabditis elegans is diploid. It can reproduce as a result of either hermaphrodite self-fertilization or of matings between males and hermaphrodites. Hermaphrodites have two X chromosomes (
Harvard - GENETICS - 201
Genetics 201, Midterm answers, 10/31/05 Question 11a. mutant 1 mutant 2 + mutant 3 mutant 4 + + + -mutant 1 mutant 2 mutant 3 mutant 4 1b.mutant 5 mut 2 mutant 1 1 mutant 3 1.5 2 mut 4 2.5 3 cM00.55-1 Distance: 5-2 Distance:0 cM 0.9 cM 0
Harvard - GENETICS - 201
Answers to Genetics 201 final December, 2005 1a). EMS P: F1: L4 +/+ hermaphrodites *1 / + *1 / + , *2/ +, etc (mutation in germline) Self multiple hermaphrodites *2 / + *3 / + Remove any F1 animals with mutant body phenotypes. Each of these animals
Harvard - GENETICS - 201
Genetic 201 Midterm 2006 Solutions 1a. Fluconazole resistant mutants can be best isolated by selection. To do this, plate a large number of haploid yeast on fluconazole-containing medium to select for those that survive. 1b. The segregation pattern i
Harvard - GENETICS - 201
Name_Genetics 201 Final exam December 19, 2006PUT YOUR NAME ON EVERY PAGE. THERE ARE THREE MULTI-PART QUESTIONS ON THIS EXAM. THE POINT VALUE FOR EACH PART IS INDICATED. THE TOTAL VALUE FOR THE THREE QUESTIONS IS LISTED BELOW. QUESTION 1 33 POIN
Harvard - GENETICS - 201
Name_Genetics 201 Midterm exam October 29, 2007PUT YOUR NAME ON EVERY PAGE. THERE ARE FIVE MULTI-PART QUESTIONS ON THIS EXAM. THE POINT VALUE FOR EACH PART IS INDICATED. WE RECOMMEND THAT YOU LOOK THROUGH THE EXAM AND ANSWER THE EASIER QUESTIONS
Stanford - LINGFS - 687
Social Stratification in the United StatesTahu Kukutai Department of Sociology Stanford University tkukutai@stanford.eduWhat is social stratification?The study of systematic inequality between groups of peopleThe 3 axis of inequality RACE GEN
Minnesota - DOUGLAS - 4321
Colby - PH - 311
vo theta165 30Solution to 2-D projectile problem with quadratic air resistance.Time 0 0.06 0.11 0.17 0.22 0.28 0.33 0.39 0.44 0.5 0.55 0.61 0.66 0.72 0.77 0.83 0.88 0.94 0.99 1.05 1.1 1.16 1.21 1.27 1.32 1.38 1.43 1.49 1.54 1.6 1.65 1.71 1.76 1
Colby - PH - 311
%!PS-Adobe-2.0 %Creator: dvips(k) 5.90a Copyright 2002 Radical Eye Software %Title: ODE2nd.dvi %CreationDate: Wed Sep 24 11:31:08 2003 %Pages: 2 %PageOrder: Ascend %BoundingBox: 0 0 596 842 %DocumentFonts: CMBX12 CMR10 CMMI7 CMMI10 CMR7 %EndComments
Colby - PH - 311
deltaa wo b Analytical6 5 4 Velocity 3 2 1 0 44 3 2 1 Velocity 0 -1 -2 -3 -4 -4Position k1x k2x 0 5 0.31 0.06 # # 0.13 # # 0.06 0.19 # # 0.25 # # 0.31 # # 0.38 # # 0.2 0.44 # # 1 0.5 # # 0.57 # # 0.2 0.63 # # 0.69 # # 0.75 # # 1.15 0.82 # # 0
Colby - PH - 311
For a central force the position and the force are antiparallel, so rFF=0. r Fr r r N =r F =0N is torquer r dL N= dtSo, angular momentum, L, is constantr dL =0 dtNewton II, angularSince the Angular Momentum, L, is constant: Its magnitud
Colby - PH - 311
Homework Assignments I PH311 Fall 2003Friday, September 5, 2003 Reading Assignment: Sections 2.1, 2.2 Monday, September 8, 2003 Reading Assignment: Section 2.3 Homework Problems 2.1, 2.2, 2.8 Tuesday, September 9, 2003 Reading Assignment: Section 2.
Colby - PH - 311
Time 0 0.31 0.63 0.94 1.26 1.57 1.88 2.2 2.51 2.83 3.14 3.46 3.77 4.08 4.4 4.71 5.03 5.34 5.65 5.97 6.28 6.6 6.91 7.23 7.54 7.85 8.17 8.48 8.8 9.11 9.42 9.74 10.05 10.37 10.68 11 11.31 11.62 11.94 12.25 12.57 12.88 13.19 13.51 13.82 14.14 14.45Posi
Colby - PH - 311
G rho6.67E-11 1135011.35 g/cm^30 kg/g1000000 (cm/m)^3
Colby - PH - 311
Time 0 0.03 0.05 0.08 0.1 0.13 0.15 0.18 0.2 0.23 0.25 0.28 0.3 0.33 0.35 0.38 0.4 0.43 0.45 0.48 0.5 0.53 0.55 0.58 0.6 0.63 0.65 0.68 0.7 0.73 0.75 0.78 0.8 0.83 0.85 0.88 0.9 0.93 0.95 0.98 1 1.03 1.05 1.08 1.1 1.13 1.15Position 0 # # # # # # #
Michigan - CHEM - 571
6 {w{qt{h!R9t{hR{6qtqiptAr{9{q tt t r96A 8 d p | xjc p x h p hc p c pon | xj y f e p | x hhos u df #fqphswclfpc!qhifxlv#}hchf As8ih8swcwiqfv'9#fr fmuhxq%thhpl1)ifqxhlsXogf8wgf#hRh%hsp d p jc x c p c h c rs p py
Michigan - CHEM - 571
wr w b r hb sb db fpdr r H&quot;oqtxhs!fHeg&amp;{gegg&quot;z&quot;gp uigeqbv~eSeqbxhoqyYxbggo#gx(uwh g vgx&quot;SgebhoqtxhoGeb3fxhgVqfcfg f h}yb d wt h st r w b t r pb wr ytd w st} r w s fty r w h h w f pd s| r w s d wt h st dt fr h} s p | hpdb f sb xro&amp;twgexbefg
Michigan - CHEM - 571
sUidtryiyixv('s'yig8trqRedvxjt(xuryhiryptrq&amp;d'tgt&amp;hvrs'swx' y f i u f w s i {u is uu u u s i h s s f i f uu h'si~hE0xrsiwtrq)v'tgqv\$Uhryz' v'ttqvbUyrvygqxu|w{ y u {u i s i y s u f f s y s u f f {u i i u i ws y w i y u {u i s i s
Michigan - CHEM - 571
f if f 7f if qgqf uf q} Df f f if j l 7l qgu ff q} ` j pt`epxh`lo`q|} j g} j kfexb`es1ep1mxn f if |gs q |z1q q wyq f r ids {b r wyqdq hq q w q i d w C A CY
Michigan - CHEM - 571
a g ch `tfa i p p ` u u q U `Y raxrwqgey bfd YWh Wh q v ch gWa cat y YWh W ey q eh a g ch phbryuqguqoduep`t4uaj y p | | `j `u2u| q &quot; uaxbmk YWh 2 y BU| l&quot;p n W qW q h Yy y g v caWas
Oregon State - ECE - 478
Realm A ClientTGS or local t ticket f s 1. reque TGS or local . ticket f 2ote TGSKerberos AS TGS3. request ticket for rem4. ticket for remote TGSServerFigure 14.2 Request for Service in Another Realm7. request remote serviceRealm B5
Oregon State - ECE - 478
Version Signature algorithm identifier Period of validity Subject's public key info Certificate Serial NumberVersion 1 algorithm parametersSignature algorithm identifieralgorithm parametersIssuer Name This Update DateVersion 2Issuer Namen
Oregon State - ECE - 478
10-bit key ENCRYPTION P10 DECRYPTION8-bit plaintext8-bit plaintextShift IP K1 P8 K1 IP-1fKfKShift SW K2 P8 K2 SWfKfKIP-1IP8-bit ciphertext Figure 3.18-bit ciphertext Simplified DES Scheme
Oregon State - ECE - 478
10-bit key10P105 5LS-15LS-15K18P8LS-25LS-25K28P8Figure 3.2 Key Generation for Simplified DES
Oregon State - ECE - 478
Plaintext (2w bits)Round 1L0w bitsw bitsR0 K1L1 Round iF R1KiLi Round nF RiKnLnFRnLn+1Rn+1Ciphertext (2w bits)Figure 3.5 Classical Feistel Network
Oregon State - ECE - 478
IVTime = 1 P1Time = 2 P2 CN1Time = N PNKEncryptKEncryptKEncryptC1C2 (a) EncryptionCNC1C2CNKDecryptKDecryptKDecryptIV P1 P2 (b) DecryptionCN1 PNFigure 3.12 Cipher Block Chaining (CBC) Mode
Oregon State - ECE - 478
IVShift register 64 s bits s bits Shift register 64 s bits s bitsOM1Shift register 64 s bits s bits646464KEncrypt64Select s bits Discard 64 s bitsKEncrypt64Select s bits Discard 64 s bitsKEncrypt64Select s bits
Oregon State - ECE - 478
CounterCounter + 1Counter + N 1KEncryptKEncryptKEncryptP1P2C2 (a) EncryptionPNC1CNCounterCounter + 1Counter + N 1KEncryptKEncryptKEncryptC1C2P2 (b) DecryptionCNP1PNFigure 3.15 Co
Oregon State - ECE - 478
Source AM E K EK(M)Destination BD K M(a) Symmetric encryption: confidentiality and authenticationME KUb EKUb(M) (b) Public-key encryption: confidentialityD KRbMME KRa EKRa(M)D KUaM(c) Public-key encryption: authentication and
Oregon State - ECE - 478
Bit:04 Source Port1016 Destination Port3120 octetsSequence NumberData offsetAcknowledgement Number Reserved Checksum Options + Padding Application Data Flags Window Urgent PointerFigure 11.3TCP Segment
Oregon State - ECE - 478
16 bitsXOR with 1-bit rotation to the rightXOR of every 16-bit blockFigure 11.8 Two Simple Hash Functions
Oregon State - ECE - 478
Y0 bY1 bYL1 bIV = CV0nfn CV1fnn CVL1fnCVLIV CV Yi f L n b= = = = = = =Initial value chaining variable ith input block compression algorithm number of input blocks length of hash code length of input blockFigure 11.10
Oregon State - ECE - 478
1.00.80.6ex0.41x0.20.0 0.0 0.2 0.4 0.6 0.8 1.0Figure 11.12 A Useful Inequality