6 Pages
Chapter 6 Physical Optics

Course: PHY 117N, Spring 2010

School: University of Texas

Word Count: 648

Rating:

# 6.5 The D iff raction Grating 1. To find the grating constant d=1/600 mm=1.67*10^-6 2. Br ight Red Yellow Green 501.6 565.7 Blue 471.3 547.0 Violet 447.1 450.3 e (nm) 667.8 587.6 (nm) 722.7 655.4 Sample calculation for the yellow line m=dsin =1.67*10^-6 sin (tan -1(32/75))=655.4 nm 6.6 The Mass of the electron from the Spect rum of H yd rogen 1. =dsin (red)=(1.67*10^-6)(sin(tan -110/69.5) (red)=237.8 nm...

##### Unformatted Document Excerpt
Coursehero >> Texas >> University of Texas >> PHY 117N

Course Hero has millions of student submitted documents similar to the one
below including study guides, practice problems, reference materials, practice exams, textbook help and tutor support.

Course Hero has millions of student submitted documents similar to the one below including study guides, practice problems, reference materials, practice exams, textbook help and tutor support.

The 6.5 D iff raction Grating 1. To find the grating constant d=1/600 mm=1.67*10^-6 2. Br ight Red Yellow Green 501.6 565.7 Blue 471.3 547.0 Violet 447.1 450.3 e (nm) 667.8 587.6 (nm) 722.7 655.4 Sample calculation for the yellow line m=dsin =1.67*10^-6 sin (tan -1(32/75))=655.4 nm 6.6 The Mass of the electron from the Spect rum of H rogen yd 1. =dsin (red)=(1.67*10^-6)(sin(tan -110/69.5) (red)=237.8 nm (blue-green)=190 nm (violet)=143.6 nm 2.E=hc/ E(red)=((4.136*10^-15)(3*10^8))/237.8*10^-9=5.22 Joules E(blue-greeen)=6.53 Joules E(violet)=8.64 Joules 3. 4. R=44.791 5. 44.791 eJ*(1.62*10^-19)=7.26*10^-18 6. m(electron)=((7.26*10^-18)(2*137^2))/(3*10^8)^2=3.028 e-30 7.

Find millions of documents on Course Hero - Study Guides, Lecture Notes, Reference Materials, Practice Exams and more. Course Hero has millions of course specific materials providing students with the best way to expand their education.

Below is a small sample set of documents:

University of Texas - PHY - 117N
Chapter 8: Batteries and DC Analog MetersAbstract: This lab explored the properties direct current and analog meters. We explored the internal resistance of a battery and the effects of batteries in series. Analog voltmeters and ammeters were explored by
University of Texas - PHY - 117N
Chapter 8: Batteries and DC Analog MetersAbstract: This lab explored the properties direct current and analog meters. We explored the internal resistance of a battery and the effects of batteries in series. Analog voltmeters and ammeters were explored by
University of Texas - PHY - 117N
5.1.4 The Simple Galilean Telescope 1. The orientation of the image seen through the Galilean telescope was upright. 2. Magnification M = fo/(-fe) M = (47.2 cm/-20 cm) M = -2.36 3. Magnification using M = (-y'/y) M = (-21.3 cm/8.8 cm) M = -2.42 4. The mag
University of Texas - PHY - 117N
7.2.2 Resistance as a function of Area 1. 2. 3. The relationship that yields an approximately linear relationship is the one where the inverse of the cross-sectional area is taken. Thus the relationship between R and A is inversely related. 7.2.3 Exercise
University of Texas - PHY - 117N
8.1.2 Batteries in Series I 1. V=E-I r r = cfw_(V-E)/I r = (4.25V-4.44V)/0.1A = 1.9 2. E' = E1+E2+E3 = 1.479V+1.479V+1.472V = 4.43V 3. Percent Difference = cfw_abs(E-E')/E'x100% cfw_abs(4.44-4.43)/4.43x100% = 0.23% 4. In ternal resistance combined (r) = 1
University of Texas - PHY - 117N
9.3.2 Measuring Amplitude 1. Method 1 Vmin Vmax = 2 divisions. (2 divisions x 2V) = 4V = Vo 2. Method 2 4.52V = Vo' 3. Percent Difference (abs(Vo-Vo')/Vo') x 100% (abs(4-4.25)/4.25) x 100% = 5.88%9.4.2 Observing the Voltage Across the Capacitor in a Seri
University of Texas - PHY - 117N
Chapter 10: Modern PhysicsAbstract: The purpose of this experiment was to explore several phenomena that are relevant to the field of modern physics. First, the speed of light was calculated by measuring the t ime i t took for light to t ravel through a
University of Texas - BIO - 206L
Exercise 1: Analysis 1. MeanThe mean is the arithmetic average of a set of values, or distribution. Standard DeviationThe standard deviation of a data set is the square root of its variance
University of Texas - BIO - 206L
Exercise 2: Analysis1. a. Microscope has a built it illuminated source. b. It is binocular. c. The field diaphragm controls the amount of light that enters the condenser and the rest of the microscope. d. The aperture diaphragm acts essentially as a cont
University of Texas - BIO - 206L
1.The objectives that require oil immersion is the 100X objective because it helps to reduced the number of mediums that the light has to pass through thus helps to reduce the amount of reduce the refraction of light that it might have cause without usin
University of Texas - BIO - 206L
1.In essence the agarose gel is like a maze for the strands of DNA to travel through. The longer the strand of DNA that is traveling through the gel the harder it is for it to travel through the matrix like structure of the gel. In this case the DNA is n
University of Texas - BIO - 206L
12. See attached graph.Approwimate length using y = -2266.8x + 11553 Control DNA: y = -2266.8(2.5) + 11553 = 5886 bp pLaf: y = -2266.8(3.5) + 11553 = 3620 bp unknown plasmid DNA: y = -2266.8(4.3) + 11553 = 1806 bp student DNA 1: y = -2266.8(5.0) + 11553
University of Texas - CH - 310N
CH3ONLee-ture 2Re vi e ~ULei ISmo.ke - - -frnrY'lCI-l~J: o.nci /'-.tl-bu.+yne-=-Hde prrtonCltt&gt;sCLlkyne~-Roo.d mo. p shows o.\KCtne[12houJtoma.ke 0.1 k yne-Fro rYlC.f.hVA-~No.-OH(: r~H2o~lr'-v-E2rx f1I No.N HdNI13-='-Hh
University of Texas - CH - 310N
_C~1310N - Lectu.re3 (Dr.Sie3el)_/1-2(0-/0 IChernic.cd Shifts . _=-&gt; el ectro ns Su.rYDLLnd i n5 +h er\ ucJe i hQ.- y'~. 0- . roa,C) ne+ic momen+ fho.+ OPPQSeG.the CtpplfeJ -Fie.ld . . _ . __.lnd u c.+i&quot;e etfecfstfIe - rj ch . h~d.rp-eQ_._Q-_Cg \'Sb
University of Texas - CH - 310N
C~310 N-Lecture 4d u.e!.0-2&quot;8-10 I. Check +he websi+e -fbr\N he n Itw i ~. Blj picture: How do We. know Nho.:t we ho,ve Whe n we do 0. reac-h'oll? How do wed e+ermi neWhat +he pY'Dduc+ is?=&quot;7NMReNNMRis. m05t common)_.Review_ 1. ECjuiv'aJent
University of Texas - CH - 310N
. CH3\oN - Lcture 5.l2-2-10/D)A-~5+C f;rJ IH~o_. o.ll)'lic hoJide: (5tt q Cj L. l L.Ln 1+ 0+ u.n~CL-t-l.A.rCA.-hon.~ R'- (iJR fl- p.CLll'lliC.-CIhoJldet'lUCleophiltc -Arst Qrder?~Nl :. Su.bstitution-. LeO-vi~. -3 VOLAp ? CI &quot; N u cleo ph
University of Texas - CH - 310N
.,_. C,H3l0N - Lec+L-lre 6J 2-4-10 I. _.No offi92 bOLt-rG on Monda_y) Febru.o.ry 8+h -fur GrAnslyo_.Ch ./5_ttwcLuQ. TueBdaY:1 Feb ruo.-ry q+heXClrn IfJUI. ru.esdQY's closs be-fbr-ebe offi&quot;ce hours_ _.._ ClYY1?W _ .Arno.K ~_ @ttowbo n d A j
University of Texas - CH - 310N
. . C-H 3JON - kec-ture 7 .j2-Q-IO/0-E&gt;'Qm I - C hoi 3 I 5 ) \ lo.. . . . . .. - - - - - . _.~_exQ.,~ . . Wil' he:t.ve._.~s:tiQn~whec?bo)(f's is lft blo.nl&lt; -forCA. rJ'nQM.9f'_.:t&quot;Mse=~_-~_-~C~f~t~H~_.~_~ . ~ ~ _-_~.~_~-~.-~.-~_~_~e~ ~ =-~:~_~_
University of Texas - CH - 310N
+H:z.Ol:b.QE)t.(enamiM. rxn )&quot;'I~NH -./.2 0 amine++-(&gt;E&amp;w;R~'O.p CL. . S rnaQQ- . -t'oose-Or. TO help . (tYl~Y_~Iio. ~H~otyt(1f;~reD.c.-fi 0 nsl;tj=&quot; (lPq\ff~~_.&lt;:_9_(Y)f?tejiQ_n_~__ te 1)'1 0 v_? . _.H2-Q. .. _/~r-:=-~6=~:= ~: .-tf
University of Texas - CH - 310N
CH31 ON ~ Lec-tu.re q_.J2,llP-IQ]Ex am reV I e w d 0.'/~..~.-1'.-0-Dl'\l'f~proton on, prt:&gt;t&quot;on off\- no /C2CLVio.,:J~1'Ol.A.-f&gt; ~po.r+u.r~2OHnucJeoph.i lie o:#OL\&lt;.=-_ ~-_.' -.'.~.-.-'. -_-. . -.-~_'-_-._-. - . _ . _. .-.-_'. - . u . . .\&quot;
University of Texas - CH - 310N
0'+2:&gt;10 N - Lec-ture 10.-'2-18~IO I . Chap+e, 11 - Carbox(jJ,.c. Ac.idso r.&lt;-c'OHIIR-C02HNomenclo.+ureo1+ -C-OHWY1Y\-iC. ()C-I d1/o,)lO/+ .Qc.e+lcbQOZOTCacido.C\c-tet ._. ,. .,.,. H-o ~(j+t oUCc.inic'ffO)~IOHo Oxcdic acidoacid. 'I
University of Texas - CH - 310N
-.~ - . - -. - -- _ . 0- . . . - - - - - - .-t.:,:.-.-. .-.- -.- - - -.-.- -.-.- -.- -.- -. . --.-.-.- -.- -.- -.0. _ _ . _ . _0_-.-._. _0_. ._ ._._._.~.~..- -=_~Q _~_ .Qf_ .ch_cU~re_.t_.J7. ._.1h.i?_j.~ _ \ . . aqd.iijQn~.~.JIr'1LI)J~lJ.1QQ
University of Texas - CH - 310N
_. CH-310N - Lecture 1'2r2&quot;-2s-lo1. fI,o1,01H,O1H-Nf&lt;-2 .- : - - - - - . _.~.-e-I-=;=in&quot;:'c~re-:-:C\~i cfw_): -:3:-rQ:;-:~-;-: ,c\:\7&quot;i~L CH .'H-oJ(RL1A' - :J~: ~XOHP'/fLOHRJl.o HH-OP-.p~' -\0 . 1\0.&quot;t'A-\8 lV~s: -.1QC'onjugoJebo.se
University of Texas - CH - 310N
&quot; CH 310 N- LecrurE 13 . /3-2-/0 _. Add; ti on -E /i rn in Cltl 0 n ..~Ol-t ~- elf mi no.+eo~.)t o-... Do'd .-add etha.no Iwo.ter-. IGfeIoHO~. . d ' -o.-2)l'~.o/'.ttaoG)/H-2.0._..-.~. _ lf1n3 . .-_. f&quot;0.-. . -rM!jCl.Whet+ dh
University of Texas - CH - 310N
i'~-_+_-eX -H 'Gare D.C-i d f C .-t-t-.e-J-+--._. _-_.--_._--,-~-AI dol-H-.f()( n~-O-NPO-&quot;/~O~OH0 -.-.-/'..-.-.-I-~-_lL_- . -.-.-~H13'~ r~cf ro~ ca-ffi~--.-.-.-.-. -i:+-~-=-~&quot;-,-.-.-~-.--_ - -.-. TerrYUnol~y ~-+~-c5-ot-:1.-fZ)C
University of Texas - CH - 310N
11i; I!i ,jl( i , IJ Ii ,_ _~-q-/0 I-i) j-+Jt-'IC@.LQtcfw_:-lKtu-~-1 &gt;-.-.-.! i. ._ .&quot;..- . _-.-.-.-.-.-.-..__Ii0-ff-II )~'O~-+II0-.-_-+-_~fl'~derived -fvD('() ClaJSe.n condenso.no /1r\III-+-+._- - ~_=_a=cetcace:=-1ic. e~ l
University of Texas - CH - 310N
,'I,_-.-LtL~lO~ -_Lectu re... _-,-_._-._-_.-._._._.~-_._-IlL;_~-J3-11-IO L~.. . n(\._.w-L~E~n~cunin e:5-~_H_H:Jy P\ f&lt;!,if&lt;i. 1'1/~iill-+-:i-tt-co-.+-,t -o-;:=;:! ~-~.-2.0p.Ofl'\j, Is;./t-;-+\ -h:-J-+-.:. ~ .ji Ocfw_-~d~en '
University of Texas - CH - 310N
i_ _ _-i~CHi:Ir1~&quot;CLm11 310 N - Lectu.rf:-=-:.f9,-2 Review1)&quot;'-)123- illo_ j.-_-_xo-.-1+-_-CY=~ - - _ ._. _ - _ . _ - - - - - - - - - - - - _ . _ - -_,1- - - _ _._..~-.1+._~_~_-~_-.~-~r+-_ H;S '~-._ _K?&gt;CS?.!-~' I~ -~-.-~ -~-~-~
University of Texas - CH - 310 N
_-~._--_._-~-_._---f+-v_.-+-+-'=-.:.:.:.~'-'-=-'-'-=-~-(i) Resono.-n ceo~r0 4 - - -. ~&quot; .eCJ\$-tru C:h,.t. res-~-+-~ expe~ments :ffnd =tho.-:t _ ~-~ cUI ~mmg a-re In- -=-t resono.ncQ\~;-hesame plane.st'YUctu.res-rr-h (&quot;')cfw_)~ i l\Qc.i
University of Texas - CH - 310 N
_ _ _ _ _-t-P&quot;'a310 N - Lecture _l.CJ3-30-10..~. ._. ._.._.._._-PI&gt;ftBr-~ ~ -_._--produc;-1~.Br kjneiic+hermodynClfn' cp rt:&gt;d.uct-,-,-m-&quot;-,I,-,-n&quot;-,Q,-r _Co! d h eo.-t- -m~_.m i no r_~rn-=.,qj~o_r_- - - _. _ . _ ._ - - - - - - - - _
University of Texas - CH - 310 N
I j:j .: !. ,I' -f C1-/-3/o N - Lec:~_ 20-+4-1-10 I._ __-lA.-iC.J&lt;.th; ()'S0- boLL.-t-.-J.=-=_ _I ~s+ ch.~_-H-~-300._ W~VQ.fen ~ _Ln.0&quot; :1-_- ---._._---.-.- -.-.-.- -T- -.-'!'lo.Yele(\~ib-~-Vier[F.;- ~J.fl,f e!,s~-p'Yl:&gt;portiOtla.
University of Texas - CH - 310 N
\I/1-*Ca-f'bOX~/iC acic)~f; rY\ore aLidic-than phenol_-_~H-~-=-+-+- _-'-ff_2.0 _~_~-_~-+,-I-H.3-0-(f)-~-~ _-'-~-'-HO6bBill ron-~-I&lt;-G'_~ -Lr\$1T~- -Io-q-~- 1 - - - - - - --11 _-r-_L_~-&quot;'-HJ'VIOcrphenol: i'tt:Ul)' really lNeDJ&lt;. acid_HO -+-_
University of Texas - CH - 310 N
CH310 N-Leciure 224-S-lo(lJfn&gt; I'Y\ l(lsi:,-. -trmoIn notes1EDBr~+~E _I++-H(f)~+Fe.B13 ~OBr:;.-\&quot;\.1+8r~FeBr 3./H Br Fe 8&quot;'3&lt;&quot;&quot;-v-ni1 rv benz. n e-, ~:-.N02.o /I H-O- s-00o/I0 1~oIt~+~N07;II~,@I-+7'o-\H- - -
University of Texas - CH - 310 N
-ttL-.;.~=-.&amp;.-~--t+- --+r-l.oL&gt;.L.of-I.Acl.J.-J.lLLLL-(1LeJJJ e w ofM.0. Th ~ +a1.k. n,J_-i-+-=.;'-'-=-'-n.:.=:.o~W_L.vi.:~t~f ntj)-+-~-.u-_.-_._-_._-_._._-_._-_ _.-.-~+-_._-_._ - - - - - - - . _ - - - - - - - - - - - - - - - - _.-_._--i
University of Texas - CH - 310 N
H cHaroNLgcfl^rrc.bznal neLr Forrns(&gt;l.lflzQfdNt t cIaHA 2nd Fprrn oFe N ucl eo phi I t r: Art'- nnc.-#i 9t&quot;r&quot;bsli+u-+ioni Add itr on / t lir^n rrafi a naIINttc; _-_*IrFt t\FtJOz_Noa&quot; fi:r rt'n +D ocuvLr ) n ead a,^fl XOf. p er-r0u f
University of Texas - CH - 310 N
()t3IO N- Lecft.tre 2 s4-20-10Exa.rY1 3 Rev lew Do.-jWhen there OJe two (3 Y&quot;Du-ps) the fY\Os+ cfw_Activct-+inj corrh&quot;D/S -the direCfinj a-bd i+y.Ex~6n., 00-+ O.sz~ I /('N07,.c&gt;'/~-H-II-~---- - -._-._-_. - - ._- _._wnich poSdiof\ \No
University of Texas-Tyler - ACC - ACC 3301
University of Texas-Tyler - ACC - ACC 3301
University of Texas-Tyler - ACC - ACC 3301
Individual Income Taxation Saturday 11:30 A.M. 2:15 P.M. Exam # 4 Chapters 14, 15, 16 &amp; 17 Name _ Date _True/False 1. Realized gain or loss is measured by the difference between the amount realized from the sale or other disposition of property and the p
LSU - EXST - 2201
Revised 01/19/20102201_Quiz1A.docmEXST 2201Quiz 1AName: Section: Score:Directions: This quiz will be due on Moodle after the lectures on Chapter 02 have been given. Mark your answers on this printout. When the quiz is available on Moodle, record your
Stratford - CS - 229
CS229 Problem Set #41CS 229, Autumn 2009 Problem Set #4: Unsupervised learning &amp; RLDue in class (9:30am) on Wednesday, December 2. Notes: (1) These questions require thought, but do not require long answers. Please be as concise as possible. (2) When s
University of New Brunswick - ECE - 549
lecture notes number 9
University of New Brunswick - ECE - 549
Module 8, Lecture 1Differential Entropy and the Gaussian ChannelG.L. HeilemanModule 8, Lecture 1Differential EntropyDefinition (Differential entropy) The differential entropy of a continuous RV X with pdf f (x) is h(x) = -Sf (x) log f (x) dx,where
University of New Brunswick - ECE - 549
Module 7, Lecture 1Information Theory and GamblingG.L. HeilemanModule 7, Lecture 1Background ContestConsider a contest (e.g., a race, lottery, beauty contest, etc.) involving m contestants (e.g, horses, people, dogs, etc.) in which one and only one p
University of New Brunswick - ECE - 549
Module 6, Lecture 3Channel Coding: Error-Correcting CodesG.L. HeilemanModule 6, Lecture 3Error-correcting CodesIn this lecture we'll look at some of the practical considerations of channel coding. Specifically, we'll first consider the question of wh
University of New Brunswick - ECE - 549
Module 6, Lecture 2Channel Coding: The Channel Coding TheoremG.L. HeilemanModule 6, Lecture 2DefinitionsW encoder Xn channel p( y|x) Yn decoder WA discrete channnel is given by the triple (X , p(y |x), Y), where X and Y are finite sets corresponding
University of New Brunswick - ECE - 549
Module 6, Lecture 1Channel Coding: IntroductionG.L. HeilemanModule 6, Lecture 1Channel Coding IntroductionIn the last module, we assumed the channel from the source encoder to the source decoder was error free. In this module we consider how to deal
University of New Brunswick - ECE - 549
Module 5, Lecture 3Data Compression: Dictionary MethodsG.L. HeilemanModule 5, Lecture 3Dictionary MethodsThe compression methods we have considered so far make use of a probability model associated with the source in order to compress the data produc
University of New Brunswick - ECE - 549
Module 5, Lecture 2Data Compression: Huffman and Arithmetic CodingG.L. HeilemanModule 5, Lecture 2Huffman CodingFor a given RV X , assuming knowledge of only p1 , . . . , p|X | , Huffman coding will produce an optimal prefix code, CHuf in terms of ex
University of New Brunswick - ECE - 549
Module 5, Lecture 1Data Compression: IntroductionG.L. HeilemanModule 5, Lecture 1Data Compression IntroductionIn this module we study the science (art) or representing information (i.e., data) in a compact form. Key idea: Compact representations are
University of New Brunswick - ECE - 549
Module 4, Lecture 1Entropy RateG.L. HeilemanModule 4, Lecture 1Entropy RateIn this module we study how to quantify the uncertainty associated with a stochastic process. In the last module we also studied this problem, but under the very special case
University of New Brunswick - ECE - 549
Module 3, Lecture 1The Asymptotic Equipartition PropertyG.L. HeilemanModule 3, Lecture 1Asymptotic Equipartition PropertyConsider an experiment in which you tossed a fair coin 100 times. Would you be surprised if you observed 100 heads in a row? Well
University of New Brunswick - ECE - 549
Module 2, Lecture 4Fundamental Concepts: Information Inequalities IIG.L. HeilemanModule 2, Lecture 4Stochastic ProcessesA number of the inequalities we consider next are associated with Markov chains, a special type of stochastic process. Definition
University of New Brunswick - ECE - 549
Module 2, Lecture 3Fundamental Concepts: Information Inequalities IG.L. HeilemanModule 2, Lecture 3Convex FunctionsMany useful inequalities in information theory make use of the notion of convexity. Definition (Convex) A real function f defined on (a
University of New Brunswick - ECE - 549
Module 2, Lecture 2Fundamental Concepts: Entropy, Relative Entropy, Mutual InformationG.L. HeilemanModule 2, Lecture 2EntropyDefinition (Entropy) The entropy of a RV X p(x) is: H(X ) =xXp(x) log 1 p(X )1 p(x)= E logProperties of H(X ):1Proof:
University of New Brunswick - ECE - 549
Module 2, Lecture 1Fundamental Concepts: EntropyG.L. HeilemanModule 2, Lecture 1Measuring InformationIntuitively, we obtain &quot;information&quot; when we learn something we didn't know before. We can also say that we gain information when the level of uncert
University of New Brunswick - ECE - 514
lecture note
University of New Brunswick - ECE - 514
Hybrid Dynamical Systems and Robust Feedback ControlAndrew R. Teel Center for Control, Dynamical Systems, and Computation University of California, Santa Barbara47th IEEE CDC, Cancun, Mexico, December 9th, 2008Hybrid dynamical systems (HDS) combine con
University of New Brunswick - ECE - 514
Notes on Model Reference Adaptive ControlC.T. Abdallah-Based on Narendra's book and S. Onori's Thesis May 2, 20051 IntroductionThe aim of these notes is to present in a compact fashion the design of model reference adaptive controllers.2 Model-Referen
University of New Brunswick - ECE - 514
ECE 517: Nonlinear and Adaptive ControlFall '07 Lecture NotesDaniel Liberzon November 14, 2007DisclaimerThese lecture notes are posted for class use only. This is a very rough draft which contains many errors. I don't always give proper references to
University of New Brunswick - ECE - 514
Nonlinear &amp; Adaptive ControlModule 9-Part II NONLINEAR DESIGN TOOLS1Topics1. 2.Backstepping. Passivity-Based DesignsMaterial in Chapter 14 of Khalil and in attached notes.2Why Other Design Tools?Feedback-Linearization may not work! 2. Feedback-Li