# Register now to access 7 million high quality study materials (What's Course Hero?) Course Hero is the premier provider of high quality online educational resources. With millions of study documents, online tutors, digital flashcards and free courseware, Course Hero is helping students learn more efficiently and effectively. Whether you're interested in exploring new subjects or mastering key topics for your next exam, Course Hero has the tools you need to achieve your goals.

1 Page

### IMG_0001_NEW_0015

Course: CHEM 122, Fall 2010
School: Simon Fraser
Rating:

Word Count: 310

#### Document Preview

rreve Revers b i le/l rs i b le TODAY'S LECTLIRE: &quot;Spontaneity, Entropy and Free Energy&quot; B Processes Reversible Process: a system is changed in such a way that the system AND surroundings are restored to their original state by exactly reversing the change (Chapter 10) TEST CASE: Isothermal Expansion and Compression 1) Expansion and Compression of an Ideal Gas of an Ideal Isothermal:...

Register Now

#### Unformatted Document Excerpt

Coursehero >> Canada >> Simon Fraser >> CHEM 122

Course Hero has millions of student submitted documents similar to the one
below including study guides, practice problems, reference materials, practice exams, textbook help and tutor support.

Course Hero has millions of student submitted documents similar to the one below including study guides, practice problems, reference materials, practice exams, textbook help and tutor support.
rreve Revers b i le/l rs i b le TODAY'S LECTLIRE: "Spontaneity, Entropy and Free Energy" B Processes Reversible Process: a system is changed in such a way that the system AND surroundings are restored to their original state by exactly reversing the change (Chapter 10) TEST CASE: Isothermal Expansion and Compression 1) Expansion and Compression of an Ideal Gas of an Ideal Isothermal: temperature of system and surroundings Gas remain constant at all times 2) Reversible and Irreversible Processes Heat reseNoir r) Since: LE: q +x:0 =@ 4) Calculating AS for Physical Processes mss P..,.",= force areQ "One-Step" Expansion and Gompression :llExpansion) ,t | ----\ Ej Zfr*'*il \r-A lWorkl I Step W --> -ir, Net nork @ = Pa+ UJ guml Net heat flow = -li) = - ?t \tlr+V, ,ein -v,6ltV1 - \()T ltE\ llRslBLII t> 1/= 1L Steps area under graph (pink) = = Reduce P"*,: P, -+ P,14 Work - -}.l1Ptvl lr,lt = vt M, wf -+ Mrl4 Reduce pressure in 2 steps 2\ 4/, 6 Steps Compressionz P1l4 -+ P1 and 4V, -+ - j Pu,",,"rocnrassinpan \aea ofpiston Extra work done 4Vt v'- -P,,,LV = - (erc( vJ. -v D -- -lt+,,-v,> =1 : 1 : PLV: 11 volume l-step Expansion followed by l-step Compression v' = - P".,,LL' .Vs Expalsion, ra-)1 2) Acceleratlon due to gravity Reduce mass: Nt Expansion: P, -+ Prl4 and Vt \/ Multiple-Step Expansion Work --:----v G \i,n, l) constdt T) =AE:0 Entropy and Work ,- -) (+ lr,l Expansion work is pathway-dependent Work is not a state function Even more ) hV1 V,'4 ead, sV = -- >-YgYrV L z/t XA ffi/ {#M 6 workdone lwul=\r,ur, t=l J :t&L/tffiWz7l) lr,lr....]r,1r l.,l W Infinite steps Infinite small steps in external pressure between P, and Prl4 -) -) maximum area maximum work (done to surroundings) tv)=o 9 - --v0 ->'tPrv1 C lw't dea'sedS +
Find millions of documents on Course Hero - Study Guides, Lecture Notes, Reference Materials, Practice Exams and more. Course Hero has millions of course specific materials providing students with the best way to expand their education.

Below is a small sample set of documents:

Simon Fraser - CHEM - 122
[&amp;+iwo*Ttyr*U*t^\44-r=+?r('-gvtV= |Vtlh/*l :T,rr-twwW=Fxyw^ilr&quot;7v - &quot;tRT?tY=nk1 l^tv)-7i&quot;nrrg A:, -GlS= nRI -hvt*)&quot;l Vr o^rl vteW etyo'nsitttfle=Vz.4vrnPJ'hM)gtu' t-&quot;';[W*. I3*ft+w e\$VNnttttnh\$a'/'&quot;P'iottAl&quot;ld&quot;% d'YLn
Simon Fraser - CHEM - 122
&quot;lnfi nite-Step&quot; ExpansionReversible Work*V, &lt; V, for expansionw* = w,&quot;,.=-nRT&quot;(?).SinceV,Vt for compressionQ: -w (for an idealgas)w =w =G\: -r*r r&quot;(a\IHr.'fvjzlv, )l!-&quot;rnRTi,z1av)In terms of pressures:B'*-.cfw_ii and fare constant)
Simon Fraser - CHEM - 122
ASfor Ghanges of Statet'At boiling point: Liquid #At meltingpoint:SolidTemperature Dependence of ASLiquid.GasEntropy change for isothermal process:L,SStates coexist at equilibrium+.+Wecanuse:mWhat if temperature changes? T, -+ T,.Proces
Simon Fraser - CHEM - 122
h4.Absolute EntropiesTODAY'S LECTURE:Third Law of Thermodynamics:&quot;Spontaneity, Entropyand Free Energy&quot;The entropy of a perfect crystal at 0 K is zeroT:0 KT&gt;OKcfw_t.to..'o(Do s rf O CldoOEDD.DOO dGD S,Oq Gs4*@'tcfw_DtloclDCDcfw_*OOAbsol
Simon Fraser - CHEM - 122
k @Jaesv'r'^ldTJ'6Se'naIA9g&quot;rrAt,0+lo&quot;c-T1*1y7 =)-&gt;1.&gt;r Lr wLj*:oftebtp) t#:W*slklr*&quot;1-ln* LY Wr*-t^'-vLtt&quot;f,r,Y! ci,uy -Lo *OYta55r&quot;nA-i6f:tr Hslscfw_a&quot;1AHs,+vtt &quot;aI v'nitt*-+-T L J,vnivwse= - TA ryrh&quot; tAq = AH- TAsE^rya
Simon Fraser - CHEM - 122
As-rndinss and Temperature.trElrrdc- I:H:Free Energy and SpontaneityProcess is spontaneousof AS determined by temperatureASuoi&quot;.^.: AS.rr,&quot;,nEtrrgy from random motionsless randomness= Low-!fnU:A&amp;Hrt + T e'ge Increase in S- El bF: more randomn
Simon Fraser - CHEM - 122
313o6!-6=P dP.H: = 2Jr?E-31q -E'E: bi*;i.3f92aI3IqIa.J,1t^i,i3- ii \'-'Y1.4;'.1B: , -. ./8ig r;6tglfr eSel536rlalo= 5 5&lt;oii69.,)=a!O='o6=22. = 9?56:F3Er:lo3l6E@gEoO^aotsI56oi1:'r a'o E oo o0a6^f,f
Simon Fraser - CHEM - 122
\fo&quot;un4Ms+hU(X)+ vt+vf7rhi,a,u6*-e15 Da at 6oc( u)- I- o?cHzroHLl,),^+,w\?Lb)=3'ocn+'v'tAG=AQo*Et&quot;eOAd r*n ?- zL dt(rvohrtqACI-otA&quot;1t bul1,1 =Oihst'&quot;tlr',A &amp;efre )olmw,t-111 PJ= N+ 10ry0H(1) *(lol['Q07*wLbb (-tJ1) = -=Aoa
Simon Fraser - CHEM - 122
tlt#Dependence of Acreaction of,PressureroDAy,s LEcruRE:&quot;Spontaneity, EntroPY and.At constant Temperature:Free EnergY&quot;fir.g. tolu*. ).Pressure/Concentration DependenceFree Enerryc l/PressureSince Volumeof=Sror&quot;Ssmall volume&gt;p.&quot;.u.. G:
Simon Fraser - CHEM - 122
Free Energy and Useful WorkTemperatu re Dependence of K.From the two expressions for AG&quot;:LG&quot; =.-Rfk(K):Mcfw_&quot; -LG:ZAS&quot;maximum possible useful work obtainablefrom a chemical reactionWe can rewrite this as:LG =rX&quot;tSpontaneous process:LG:+
Simon Fraser - CHEM - 122
L,\.TODAY'S LECTURE:Electrochemistry&quot;The study of the interchange ofchemical and electrical enerry&quot;&quot;Electrochemistry&quot;(Chapter 11)l)&gt;Reduction-Oxidation (Redox) Reactions(rxns involving the transfer of electrons)Galvanic Cells-&gt; 2 Processes2)S
Simon Fraser - CHEM - 122
l)Stop charge build-up+=(Half-cel I potentials)complete circuitPorous Disk or Salt BridgeZ* =measure of how easily species isreduced or oxidisedI atm, 1 M)@ standard conditions (25&quot;C,Al :Zf -+ Ztf* + 2; ;Cu2*+ 2e- -++2) Measure driving for
Simon Fraser - CHEM - 122
Standard Hydrogen Electrode.Standard Reduction Potentialsoih.ta9-?-?6qi?ol-qarFl-ooCan't measure potentials of individualelectrodes directly=Need:Fql-l. -FFlin?de iocioooi tllllttro ioiJeicj?;ii -,'.,.,r.F.:reference for standard reductio
Simon Fraser - CHEM - 122
f'lhtcfw_ 19 +/1'L cLcfw_fl&quot;ryfwtnnu.z^Lr?r&quot; E&quot;: - 0-16ft1tt + )e- Fo= - I'6b+ &gt;e;rt(3t,i + &gt;nL*0,te,rvil 3ztf, I 2Al.-&gt;E&quot;*t4=Eca+t*417 - E c a'*4*1o.26- (t-66) = +o'JVOOvJnox:-nFL@A = -bx1b+y7&quot; 0&quot;1 = -5&gt;l h-t/rt&quot;tulnr,*t = -nFtrt'l
Simon Fraser - CHEM - 122
Lz+Electrical WorkTODAY'S LECTURE:Galvanic cell reaction&quot;Electrochemistry&quot;=Work is doneBecause: Electric charges (e-s) are movedThe total amount of work done depends on:.1) Work done on each electronElectrical Work:.Cell Potential and Free E
Simon Fraser - CHEM - 122
(v n,L (!rU&amp;'ot^)rylrf\^4.( iS*eAAE = E'-llcd t ).oA)lCt,p,^,*JP'&quot;\$?l^-t,A^At-lrCa+hsat-Ivtczh, Wt tL'0 A[ofu&quot;to F&quot;w^4Ld lC+e-)b )vI&quot; c'.2E&quot;=to&lt;zN-) \'u t,n n=Z ?, -&gt;.r.lv-&gt;t z6[q1r-t2-hthgcfw_-&gt;foVcfu00.5&gt;- C-&gt;.iJ) =
Simon Fraser - CHEM - 122
Galculation of EquilibriumGonstants for Redox Reactions.Concentration CellsSame components on each sideNernst equation:Euu= E&quot;-:BUT different concentrationt926rgn@2s&quot;c=: max potential before any current flowsCurrent flows?.=eT flow to eq
Simon Fraser - CHEM - 122
cto;@r+ e- )6G,+-O-O&quot; @2 -)h-L f&gt;tlaL+&gt;.t- o.V'Y&gt;/J'C; +&amp;L,o-(4F== &quot;.'t5lo-blV_\-/lrlo-oto1(:lZ *rl6=:Qlrlryti&quot;eaL:\5.Eew:f rf) -)W -'fn* f W h7,c.)('P- -FluA - o'v&gt;7 VU/,(l-Edrulo'\Y = o.fitf /]r,l -xlo-fu*,nt Ye(
Simon Fraser - CHEM - 122
L*TBatteriesStore chemical energFTODAY'S LECTURE:&quot;Electrochemistryl'..Batteries+ release electrical enerry when needed.Based on Galvanic cell:&quot; 2 electrodes&quot; Appropriate electrolye.(conducting medium)Several cells in series:Etotut: X (E f
Simon Fraser - CHEM - 122
Car Battery. 5lcrd-=ilaelb in seriesb-)6 x 2.02 V:12Dry Cell BatteriesVNon-liquid electrolyte-.SM6mh^cfw_zire inmrcas)Leclanch6 cell.Mncfw_)'t,2NH4+flows from Battery to Starter MotorEcertxSponmeous Galvanic cell reaction:Pb+Ptoz+ 2II
Simon Fraser - CHEM - 122
Car Battery. 5lcrd-=ilaelb in seriesb-)6 x 2.02 V:12Dry Cell BatteriesVNon-liquid electrolyte-.SM6mh^cfw_zire inmrcas)Leclanch6 cell.Mncfw_)'t,2NH4+flows from Battery to Starter MotorEcertxSponmeous Galvanic cell reaction:Pb+Ptoz+ 2II
Simon Fraser - CHEM - 122
Gorrosion of lronCorrosionRustingCorrosion = oxidation of a metal:Electrochemical process(not direct oxidation)Electrochemical processzP:O2+2H2O + 4e- -+ 4OH-+0.40vEasity corroded metals: E&quot;(metal) &lt; F(Oz)Nonuniformity in metal -&gt;Anodic regi
Simon Fraser - CHEM - 122
Steel Gorrosion PreventionSteel: alloy: Fe + C (0.02 -TODAY'S LECTURE:&quot;Electrochemistry&quot;.ElectrolysisRusting of steel = rusting of ironFe _+._8&quot;:Fd* + 2e-_(_0.44 V)Methods for preventing steel corrosion:..Corrosion prevention.1.7%) + Mg,
Simon Fraser - CHEM - 122
Electrolysis andElectroplatingElectrolysis+Production of AluminumAluminumCan't use aqueous solution of Al3*E:-t.66VAl3*+3e-+Al- which &quot;plates out&quot; first?4HrO + 2e' -&gt; 2Hz+E :0.80VAg*+t-+Agcu2*+2t+cu E:0.34YZn2* +?n- -+7a, E :4.76V=otherme
Simon Fraser - CHEM - 122
Topics and Textbook SectionsMark AssignmentsChemical Kinetics: Chapter l5-Whole chapterTotalChemical Equilibrium: Chapter 6-NOT6.9Solubility Products: One part of Chapter-Only 8.8-8up to and including &quot;Common Ion Effect&quot;Acids and Bases: Cha
Simon Fraser - CHEM - 122
Acids and BasesMain problems: ( Fr- 1t't tu / e'Eguilibrium. pH calculations:Main problems:. Calculating Q, K and K,. Equilibrium calculations t Approx.. Le Ch6teliers principle. Kro calculations- Strong acid/base- Weak acid,/base- Polyprotic a
Simon Fraser - CHEM - 122
Acids and BasesMain problems: ( Fr- 1t't tu / e'Eguilibrium. pH calculations:Main problems:. Calculating Q, K and K,. Equilibrium calculations t Approx.. Le Ch6teliers principle. Kro calculations- Strong acid/base- Weak acid,/base- Polyprotic a
Simon Fraser - CHEM - 122
CHEM 122 Practice Questions for Final examKineticsl.The reaction of (CH3)3CBr with hydroxide ion proceeds with the formation of (CH3)3COH.(CH3[CBr(aq)+ OH-(aq) -+ (CHr),COH (aq) + Br(aq)The following data were obtained at 55&quot;C.[cfw_CH3)3CBr]sExp.I
Simon Fraser - CHEM - 122
kfonlt/Fi[* lffi&quot;rr (R = 8 3I4 J/mor' K )ffi:ll:l il:1&quot;ffi'il:;a; li:' r*:nH:T:lllnTtrilsl;]ffi&quot;T iffi:frifiJ45.6a) S.OOe) 18.3c\,RrT[ForqelOl(g) =: 2H20tgfIt'uiitthe reaction Zttz(e)+o^y,RT)T?+K andthe relationship between?fl:ri,t
Simon Fraser - CHEM - 122
0r\$-tolv'Acid Base9. A monoprotic weak acid when dissolved in water is 0.92o/oCalculate K&quot; of the acid.-bwrr)dissociated and produces a solutionpHwithHt+ A-HAc',&amp; =Si:itj0.Dt&amp;410.A 0.10-mol sample ofK&quot;2 is 1.0u) t.o*lo-5Mc) 0.40 r+ H-
Simon Fraser - CHEM - 122
AE=c w'1/15. rn an isothermal process, the pressure on oneto 100.0 afrnat25&quot;C.-or. oru.da&amp;n*&quot;*&quot;i&quot; *rffii&quot;lil*.5;-cfw_*fv, -v) =I)-vi)Calculate w.LV nvt=&gt;( (n nf)*;,'*c)od) -23.5 kJe) 23.5 kJ4'00 atmmole of an ideal monatomic gas suddenly
Simon Fraser - CHEM - 122
aQ&quot;=-Fcfw_.e.&amp;P l-scfw_1,21. For a particular reaction the equilibrium constant is 1.50 x l0-2 at 370'C and AI1&quot; is +16.0kJ at 25&quot;C. AssumingAFl' and l^9' are temperaturealculare A,s' for th.a) -18.8 J/Kin6ffi;&quot;.;.(B)-ro.o ln&lt;tJ-n-flAIc = -&amp;)
Simon Fraser - CHEM - 122
25. The reduction potentials for Au3* and Ni2* are as follows:: +1.50 VE :4.23 YAunN +U- i2* 2e- -+ NiRAur* + 3e- -++t = t.\-L'o't)E&quot;t.Jz&quot;,t.Calculate AGo (at 25'C) for tre reaction:3Ni-+ 3Ni2* + 2Au2Au3* +b= -nFE&quot;rd),D0&quot;a)-2l40kJb) +5.
Simon Fraser - CHEM - 122
25. The reduction potentials for Au3* and Ni2* are as follows:: +1.50 VE :4.23 YAunN +U- i2* 2e- -+ NiRAur* + 3e- -++t = t.\-L'o't)E&quot;t.Jz&quot;,t.Calculate AGo (at 25'C) for tre reaction:3Ni-+ 3Ni2* + 2Au2Au3* +b= -nFE&quot;rd),D0&quot;a)-2l40kJb) +5.
Simon Fraser - CHEM - 122
Answers:1.a2.a3.d4.a5.e6.c7-c8.d9.410. d11. d12.a13. c14. a15. a16. d17.b18. d19. c20. b2t.b22.b23.24.25.26.27.bacda
Simon Fraser - CHEM - 122
.\$-eaker bondK.=HFHCIFIBri0rHIl0e10.108stronger acid=1:c'BondSrei:e:h LengthBondDissociationEnersr| |t 1tl i Ilvv L,Bond Polarity.Acid strength also correlates to bond polarityIncreasing acid strengthcH, NH3 HrO ItrIncreasing bo
Simon Fraser - CHEM - 122
i-*r.i\'a l,\Y l'i--1-59oc)sdo=Ed.\$,O1r-fIttoor. IoES?',6\J.: t!r6l.L/ rrHilOHqoa'Pt:,')otou!oU\$.609JH)p&quot;l:EH.gcfw_&quot;390.iC'F ?I-:-lo-qt\.-. o\trcfw_-1\'-sAJt).(|J/r rNooll5('(_\,\I't'll
Simon Fraser - CHEM - 122
\$ltr-l'l\Iti\lnI l-\l^f\ |/\ I.o.to+-.ol\16l-.alrXsesol'E,2vIllgE,,aIE.'I,^t^F'1u.9oHrg&lt;(-;xxvY\o_i-.:\$aI'&lt;l-I\)-lN:d'11&quot;-s!a'a./','l/q&lt;t!g'V=x'lxJurJlr3r;1/'tESJs.'=f9odN97tsi-+r6l
Simon Fraser - CHEM - 122
Chem L22 Fall-0g Trtorial 4Question 1-: For the gas phase reaction wO(S)+Or(g) - NOz(S)+Or(S),the following experimental values for the temperature dependance wereobtained:p= O ,-Ea/RITemperature (K) ll 195 na 260 298 396k(x10eL.mol-ls-l)ll1.08
Simon Fraser - CHEM - 122
c) What is k at?:50K?B -+ 3 D' the activationn 2z For the uncatal yzed reaction A + catalyst was added, theQuestiokJ. when aenergy was determined to bL 25what is the ratio of the rate constantactivation energy became 20 kJ.uncatalyzed' reaction?
Simon Fraser - CHEM - 122
Question 4: The following partial pressures were observed for the reac-tion at50OK:2 NH3 (g)*N, (*)'PNH'atm0.01*3H, (*)PNz0.03(3)Puzatm0.01 atma) Calculate the value of K, and the total pressure at 50O K.tr= fry'Pll'IpNHl'-cfw_,+4 f
Simon Fraser - CHEM - 122
Question 5: For the reactionNH4OCONH, (&quot;)*-'2 NH3(r)*CO,(*)(5)at 25 oC, the equilibrium constant in terms of activity is 0.03. A certainamount of NH'OCONH, is allowed to come to equilibrium with theabove products. Calculate the total pressure.
Simon Fraser - CHEM - 122
Chem 122 Fa11-09 Week 6, Tutoriall.5Calculate the value of K fbrOz(e)* O(*)&lt;)O:G)given thatNOzG)NO19*O(e)Or(g)* NO(e)K=6.8x10-aeNO21g)* Oz(e)9 +N,t: = lV,Oz tl^lz = r.tC a JgK=5.8x10-34t. cfw_ o x ,&quot;*1-)K = &quot;y, tit' )2. Calculate the va
Simon Fraser - CHEM - 122
3. Consider the decomposition of HOCI at298K2HOCl6y)H2O19 +ClzOlr;K = 0.090If l.200atm of HOCI, 6.000atm of H2O and 5.500atm of CL2O are placedin a vessel and allowed to equilibrate what would be the o/o change in theamount of HOCI?,4&quot;l,z, H0l
Simon Fraser - CHEM - 122
4. Given the reaction&lt;)Fe3'1&quot;4 * A8(.)Fe2.1ud* Ag.(uq)K=1.10x10-2a*'^tCalculate the amount of Ag'(&quot;d in moVL in solution if 0.60 M ofand 0.50 M Fe2t1&quot;q; are put into solution with Agt,l.Jc-rXo-JtXc-xE o'6-xoxO.L/(6'r *x) xk=l.lo y /D
Simon Fraser - CHEM - 122
,Ar 1'fFyt?c\$'ll* -tucfw_al^r= o'zb1q) =at* -t&quot; -LhPcrcfw_u(1) + U-&gt;t!)cfw_ ^i,pe4bwe;Eaccfw_r41n1*l1i*;&quot;^t9W-iX+^'&quot;t2.oo ab^)nx c- 'j-,fdt +CtPalsJr&quot;o()C-XKxtQ-xY=xn-x JYrk- 2.oo?r=-xPv=nKT-)n=&quot;ffCr( r.v7q+-)'
Simon Fraser - CHEM - 122
5. consider the followingon'reaction.,-' ta&amp;A e BGl * 2ctt.-b/'fvYkt'&quot;'/.- l^tl^ *t[v^'l#1&quot; * *ihcfw_,/NIIL'&quot;?org)fl;ft,,i14+yrygvo+,l,wn,uFor each of the followiig sets of initiat conditions, a! 25&quot;C, in whichdirection will the reaction p
Simon Fraser - CHEM - 122
+:.EilCiii;E?E=i!=EI9-E. E -e =.t.J ZG o.-6&lt;-_z,. _iti=2 oS.?Y=ao?+il=ts;=*= &quot; F?f3 gfF=+f; f:;?Etafr ziir?:;4=E *li iAn=37;tiEiri?u ? ^:I=*iii+;*'q06=-J'-FII-IqLIFll-l?iI&quot;rT I:;EA I!i ll|c,:lglglI z-&quot;'&quot;r-=1
Simon Fraser - CHEM - 122
\cba\Z,.Nen\ Fos.?fila(E,FtrFo=tf;'=.=C\C\FIE6=E,|lYr?\r-r/-oIrF.()Exdb ._=oq.Sr^-.,OSXo-.EgEEo.=.=88=FEL-'IJJ=I--'FJr(JJ.o-r+.l-Ja.Fcfw_IJJtra'lJ-3=IFzIYJIu=lC)a4&gt;cfw_l-cfw_63r-1odt1&gt;cfw
Simon Fraser - CHEM - 122
&amp;._3\$.r-toorl]X-IaJ-AHN)F(D(Dr-tLrlw5F ? 8?8 J6 | ? 5 r.E os.ZFoNg303'P +og -o;a6d.Aii;FI0)rdiatIo3oa,ECLIJg,Ez+iI36'av)\-/-Ecfw_JEIEagsEO)EhEUiJ[B\$ IsP.vE'GF;s'8 x s-9lpc)ev) SodX
Simon Fraser - CHEM - 122
(fCoKnrratio.s (ml/L)tJzbJsaJI'JozzzP-OOAld_=.IIo5orh+goF+II0a='!N)ilililooobbbooo3EoaN]oaAAzoNoFA)iltDFtv0qolliivirl.t!doi+cfw_CD(DJr+tiJCDoiJov)CD)(+H.Hi)CDFr.HiJPO\0H.(+
Simon Fraser - CHEM - 122
Ncfw_ILUDecomposition ofTODAY,S LECTURE:2NO2(g) -+ 2NO(g) + Oztg)*REACTION KINETICS'.Instantaneous Rates.NO2Rate LawstDetermining the Rate Law!:o.quMethod of Initial Rateslnstantaneous RatesRate of Product FormationInstantaneous rate of
Simon Fraser - CHEM - 122
Method of lnitial RatesMethod of lnitial RatesExperimental data: Initial, instantaneous ratesWhat if the reaction rate depends on morethan one reactant?Concentration (M)RunRate (decreaseof[No]olHzln[NO]) mol L-r s-rMethod of initial rates:#t
Simon Fraser - CHEM - 122
Lcfw_\The lntegrated Rate LawT.DAY,S LE,CTURE:..,REACTION KINETICS&quot;Differential Rate LawHow rate changes with concentration.lntegrated Rate LawThe Integrated Rate LawHow concentration changes with timeFirst Order Rate LawsFirst-order Rate Proc
Simon Fraser - CHEM - 122
Example: 1&quot;t Order Rate Law2N2O5Questionl:-++ 024NO2.Is this a First-Order Reaction?Question 2: What is the rate constant?Answer: We can't tell without an experiment!+Half-life of lst Order Reactions.Measure how concentration varies with tim
Simon Fraser - CHEM - 122
2ndOrder lntegrated Rate LawSecond-Order Rate Processes1laA + productsDifferential rate law:Rste:-(Ddt4ldt=tAI-[A]oIf [A]o andkareknown, [A] canbe= klAf'calculated at any later timeRearranging,Second-order Integrated Rate Law: equation
Simon Fraser - CHEM - 122
.!rIZero-Order Rate ProcessesTODAY'S LECTURE,REACTION KINETIGS&quot;I.Differential rate law+aAproductsIIiRate.Zero Order Reactions.Rate Law for &gt;1 Reactant.The Isolation Method.- M:klAfo-kdtReaction MechanismslAl:-frr+[A]o_&quot;v2 [A]
Simon Fraser - CHEM - 122
What lf We Have &gt; 1 Reactant?Summary: Kinetics for Reactionsof the TYPe: aA + ProductsFor more complex reactions such as:5\^RaE:lawfRate =klAlRate =vtlAI2l,t!=-rt+lt\ r[z],=-tr+t'['a] k=&quot;.frIntegratedRate LawPlot need togive astraight li
Simon Fraser - CHEM - 122
Reaction MechanismsReaction Mechanism:series of steps that make upthe overall chemical reactionGOAL: To determine the reaction mechanism fromexperimental kinetic data that we have measuredOverall mechanism: composed ofa sequenceof&quot;elementary rea
Simon Fraser - CHEM - 122
Rates and Molar RatiosL5ToDAY,S LECTURE:Reaction rate oC-.REACTION KINETICS'..Number of molecules consumedor produced by each reaction stepExample: For the first order reaction2A-+28+CRates and Molar RatiosdTCl.Rates and equilibrium.dtPr
Simon Fraser - CHEM - 122
Pre-equilibriumIn reactions with a fast initial equilibrium step:FastSlowk'k,A+B -i- lntermediate-a&gt;k_rExample: Pre-Equilibrium.Decomposition of Ozone2ot@) -+ProductsExperimentally determined Rate Law:FastRate:DeterminingltcO *, and *-,