# Register now to access 7 million high quality study materials (What's Course Hero?) Course Hero is the premier provider of high quality online educational resources. With millions of study documents, online tutors, digital flashcards and free courseware, Course Hero is helping students learn more efficiently and effectively. Whether you're interested in exploring new subjects or mastering key topics for your next exam, Course Hero has the tools you need to achieve your goals.

5 Pages

### Unit 12 Test

Course: ME 205, Spring 2011
School: University of Texas
Rating:

Word Count: 631

#### Document Preview

Asinewavewithamplitude3andfrequency3Hz. c. Alinethatintersectstheyaxisaty=4andhasaslopeof PHPScripttestTake 1.Plotthefollowingcurvesoveratimescaleof5:0.01:5: a. A2ndorderpolynomial2.1x2+4x1. b. 1.5. Varycolorsandlinestypes(solid,dashed,etc.) Tip:Asinewave withamplitude17and13Hzfrequencyisy=17*sin(13*2*pi*x). t=5:0.01:5; y=2.1*t.^2+4*t1;%a z=3*sin(3*2*pi*t);%b x=41.5*t;%c plot(t,y,'b',t,z,'g:',t,x,'r')...

Register Now

#### Unformatted Document Excerpt

Coursehero >> Texas >> University of Texas >> ME 205

Course Hero has millions of student submitted documents similar to the one
below including study guides, practice problems, reference materials, practice exams, textbook help and tutor support.

Course Hero has millions of student submitted documents similar to the one below including study guides, practice problems, reference materials, practice exams, textbook help and tutor support.
Asinewavewithamplitude3andfrequency3Hz. c. Alinethatintersectstheyaxisaty=4andhasaslopeof PHPScripttestTake 1.Plotthefollowingcurvesoveratimescaleof5:0.01:5: a. A2ndorderpolynomial2.1x2+4x1. b. 1.5. Varycolorsandlinestypes(solid,dashed,etc.) Tip:Asinewave withamplitude17and13Hzfrequencyisy=17*sin(13*2*pi*x). t=5:0.01:5; y=2.1*t.^2+4*t1;%a z=3*sin(3*2*pi*t);%b x=41.5*t;%c plot(t,y,'b',t,z,'g:',t,x,'r') 2.Thematrixbelowshowsthefrequencyoftheresultafter rolling2diemanytimes.Usthematrixtocreateanxyplotanda bargraphofthedata.Inacommentinyourcode,telluswhich graphismoreappropriate. 123456789 2 7 9 9 15 21 37 17 4 %xyplot MyData=[ 27 39 49 515 621 737 817 94 10 11 12 ; 5 2 1; 105 112 121]; plot(MyData(:,1),MyData(:,2)); %BARGRAPH MyData=[ 27 39 49 515 621 737 817 94 105 112 121]; bar(MyData(:,1),MyData(:,2)); %Becausethepossiblevaluesfordieareintegersbetween2and12,thebargraphismoreappropriate.It moreclearlyandintuitivelyrepresentsthedata. %Iassumedthattheveryfirstcolumnofthegivenmatrixrepresentsthenumberoftherow,andisnot partofadata,because2diescannotyield1. 3.Whatisthebasicconditionthatmustsatisfiedforusingthe PLOTcommandinMATLAB?Hereisagoodbuttrickyexample: clear all; clc; t=(0:0.01:2) sinfct=sin(2*pi*5*t) cosfct=cos(2*pi*2*t) ect=exp(-2*t) plot ( t,[sinfct,cosfct,ect]) TypetheabovecodeinMATLAB.Whatistheerror?Identifythe bugandturninthecorrectedcode. %Assumingthatthecodeisintendedtomakethreedifferentcurves1)sinfctvst;2)cosfctvst;3)ectvst; Belowisthecodetomakeallthreecurvesinthesamefigure. clearall; clc; t=(0:0.01:2); sinfct=sin(2*pi*5*t); cosfct=cos(2*pi*2*t); ect=exp(2*t); plot(t,sinfct,t,cosfct,t,ect) 4.Plotthetwofunctionsetandetusingarangeandstepsizeof yourowndevising. a. Onasingleplotwithdifferentcolors. b. another. Inyouropinion,whichplotbestillustratesthedata?Makesure OntwoplotsinthesameFigure,nexttooneanother. c. OntwoplotsinthesameFigure,Aboveandbelowone youdeterminearangeandstepsizethatadequatelyillustrates thefunctions. a)x=3:0.1:3; y=(exp(1)).^(x); z=(exp(1)).^(x); plot(x,y,'b',x,z,'g') b)x=3:0.1:3; y=(exp(1)).^(x); z=(exp(1)).^(x); subplot(1,2,1); plot(x,y); subplot(1,2,2); plot(x,z); c)x=3:0.1:3; y=(exp(1)).^(x); z=(exp(1)).^(x); subplot(2,1,1); plot(x,y); subplot(2,1,2); plot(x,z); %Twoplotsonthesamefigure(partaandb)willbebetterthanplotonparta.Thereasonisinparta,the curve(e^x)issmallwhiletheotheroneisbig.Sothescaleisbigforxandyaxis.Thereforeit'sdifficultto seethe(e^x)curve.Now,inthepartsbandc,bothcurveshavetheirindividualplotswithappropriate scaleswheretheyarebothbigandeasytosee. 5.Considerthetwodimensionalfunction f(x,y)=sin(x^2+y^2)*e^(0.2*(x^2+y^2)) Makeathreedimensionalplotofthisfunctionusingonlythe MESHandSURFcommandsandwriteasmallnoteabouthow thefunctionsdifferfromeachother. Usethefollowingrange. x=3:0.1:3; y=6:0.1:6; %MESH clearall xData=3:0.1:3; yData=6:0.1:6; [x,y]=meshgrid(xData,yData); zData=sin(x.^2+y.^2).*(exp(1)).^(0.2*(x.^2+y.^2)); mesh(xData,yData,zData); %SURF clearall xData=3:0.1:3; yData=6:0.1:6; [x,y]=meshgrid(xData,yData); zData=sin(x.^2+y.^2).*(exp(1)).^(0.2*(x.^2+y.^2)); surf(xData,yData,zData); %MeshandSurfdrawthesameplots,theonlydifferenceisthatSURFfillstheplotwithcolorswhile MESHdoesn't.
Find millions of documents on Course Hero - Study Guides, Lecture Notes, Reference Materials, Practice Exams and more. Course Hero has millions of course specific materials providing students with the best way to expand their education.

Below is a small sample set of documents:

University of Texas - ME - 205
University of Texas - ARH - 301
ARH 301Renaissance vs. Baroque PaintingHendersonThe discussion sections for this week provide a chance to look at paintings from theRenaissance and Baroque in terms of the stylistic contrasts between the periods. Wehave discussed a number of those co
University of Texas - ARH - 301
Henderson ARH 301REVIEWForm/Style = the formal characteristics (i.e. those covered in the paper assignment,questions, color, line, composition, etc.) that distinguish one artists work from another orone stylistic period from another (HOW)Subject Matt
University of Texas - ARH - 301
SAMPLE PAGEFIRST TESTARH 301I. COMPARISON/SLIDE DISCUSSION (20 points total; 10 minutes). Identify eachwork and then answer the following questions about them.LEFTRIGHTArtist (if known):_Artist: _Title: _Title: _Civilization/Stylistic Period: _
University of Texas - ARH - 301
Reflection Journal Suggestions 2009Henderson 301The reflection journal entries (ca. 2 pp. written in a Blue Exam Book for each one) are a chancefor you to express your own ideas in response to what youre learning in lecture and in theDiscussion Sectio
University of Texas - ARH - 301
ARH 301SECOND PAPER ASSIGNMENT (due Nov. 22)HendersonYour paper (2-3 pages, double-spaced and typed in a font no smaller than 11) is to be a formal analysisof one of the following paintings/works, all hanging on the 2nd floor of the Blanton Museum, ex
University of Texas - ARH - 301
ARH 301Dr. Linda D. HendersonArchitectural Terms for Use in Discussion Sections(See also glossary at back of Wilkins text)CONSTRUCTION TECHNIQUESPost and lintelArch-round (Roman and Romanesque) or pointed [Gothic]Vault: Barrel or tunnel vault;Groi
University of Texas - ARH - 301
ARH 301Blanton Museum Scavenger HuntHenderson(To be turned in at first discussion session meetingSept. 1, 2, and 6)Your name_Your TAs name_1. Go to the Blanton Museum and gain free entrance by showing your student ID. Pick up the VisitorMap at the
University of Texas - ARH - 301
ARH 301Introduction to the Visual ArtsDr. Linda D. HendersonFall 2011First Paper Assignment(due Sept. 20 in class or by 5:00 at my office, DFA 2.122)PLEASE BE SURE TO INCLUDE YOUR TAS NAME AT THE TOP OF YOUR PAPER.This is a looking assignment, NOT
University of Texas - ARH - 301
Second Test StructureHenderson ARH 301I. Slide comparisonRenaissance vs. Baroque contrasts (26 ptsUse first 3 Wlfflin pairs of formal contrasts, naming and pointingout how that quality is presentplus 2 additional contrasts from bottom of Study Guide
University of Texas - ARH - 301
ARH 301/Fall 2011Image Reserve Slide List-Tray 1Introduction to the Visual ArtsHendersonThis is the first group of Digital Image Reserve slides for this class located athttp:/dase.laits.utexas.edu . (Go to the home page, select &quot;Public Sets&quot; at the l
University of Texas - ARH - 301
ARH 301/Fall 2009HendersonImage Reserve Slide List-Tray 2Introduction to the Visual ArtsThis is the second group of Digital Image Reserve slides for this class located athttp:/dase.laits.utexas.edu . (Go to the home page, select &quot;Public Sets&quot; at the
University of Texas - ARH - 301
Image Reserve Slide List -Tray 3ARH 301/Fall 2009Introduction to the Visual ArtsHendersonThis is the third group of Digital Image Reserve slides for this class located athttp:/dase.laits.utexas.edu . As for the first and second tests, these are the i
University of Texas - ARH - 301
How?(Style)What?(SubjectMatter)(includingartisticsources)Impressionism(Monet)Why?(Content)(includingculturalcontext)No style sources discussed,but what about technique?PostImpressionismGauguinVanGoghMunchFauvism(Matisse)PostImpressionism(C
University of Texas - ARH - 301
ARH 301Study Guide for First TestFall 2011HendersonI. Slide identification and discussion . You should be able to identify and place in a civilization orstylistic period the works on the Slide List-and also understand the way in which the work is apr
University of Texas - ARH - 301
ARH 301HendersonStudy Guide for Second TestI. Slide ID and discussion . You should be able to identify and place in a stylistic period the works on the SlideList and understand the way in which the work represents the artist and/or period in which it
University of Texas - ARH - 301
ARH 301Study Guide for Third TestHendersonI. Slide ID and discussion. You should be able to identify (Artist, Title) and place in a stylistic periodor movement the works on the Slide List and understand the way in which each one represents theartist
University of Texas - ARH - 301
ARH 301Introduction to the Visual Arts, Fall 2011Dr. Linda D. HendersonDFA 2.122, Office Hours: Wed. 1-3The aim of this course is to increase students understanding and enjoyment of the art and architecturein the world around them. The class seeks to
University of Texas - ARH - 301
Third Test Structure (102 pts total)Henderson ARH 301I. Double slide discussion (16 pts.) Identify both works andanswer questions about Style (How?, including sources) andContent (Why?the artist's goals) for two paintings. Onecomment for each questio
University of Texas - ARH - 301
Optional Study Sheet for Organizing Art History 301 ContentHOW? (style/form) HOW?WHAT? (subject)SCULPTUREHow isIn sculpture, who isOrganizing Questions(style/form)the human body treatedrepresented? What was theARCHITECTUREand Concepts (what is
University of Texas - ARH - 301
ARH 301Linda D. HendersonOVERHEAD NOTESFIRST THIRD OF COURSE_HOW ART COMMUNICATES /INTRODUCTION TO SCULPTURE TECHNIQUESDefining art is a challenge. Some of the ideas often raised about art are:-expresses a message (emotions or some other meaning)-
University of Texas - ARH - 301
ARH 301Linda D. HendersonOVERHEAD NOTESLAST THIRD OF COURSE_THE POST-IMPRESSIONIST LIBERATION OF COLOR AND FORM(Art as self-expression via color and line)Impressionism 1870s-early 1880sMONET RENOIRSeek to record sense data like a scientific record
University of Texas - ARH - 301
ARH 301Linda D. HendersonOVERHEAD NOTESSECOND THIRD OF COURSE_MODERN ARCHITECTUREAmerican Early ModernismSULLIVAN, Carson-Pirie-Scott Store, 1899-1906*F. L. WRIGHT, Fallingwater, 1936-37International Style ModernismRIETVELD, Schroeder House, 1923
University of Texas - ARH - 301
ARH 301Introduction to the Visual ArtsDr. Linda D. HendersonALTERNATE DISCUSSION SECTION ATTENDANCE PERMISSION FORM(PLEASE PRINT INFORMATION CLEARLY)I will be unable to attend the discussion section for which I am registered on_ (Day and Date)becau
University of Texas - ARH - 301
WEEK 2: Sculpture DiscussionVocabulary for discussing sculpture:Relief carving: a sculptural form or design, created though a subtractive method, that projects fromits flat, background surfaceNaturalism, naturalistic: when the elements or forms within
University of Texas - ARH - 301
Metonymy (in literature and art):LiteratureThe lands of the crown(versus saying the lands of theking) ; characteristic (or part) of kingstands for the king.ArtForms can read as a body withoutdetailed description; part or characteristicsignifies b
University of Texas - ARH - 301
Martin Luther King, Jr. National Memorial, digital renderingsMartin Luther King, Jr. National Memorial, 2011, granite. National Mall, Washington , D.C.www.mlkmemorial.orgThe Martin Luther King, Jr. National Memorial, 2011Washington, DCThe MLK, Jr. Na
University of Texas - ARH - 301
University of Texas - ARH - 301
ARH 301HendersonFundamentals of Painting Discussion SectionMEDIUM/TECHNIQUEWhat is the medium (tempura or oil)? What is the medium applied to (panel or canvas)? How is thepaint applied, e.g. thickly, thinly, one or several layers? Is the technique co
University of Texas - ARH - 301
ARH 301SOME ADVICE FOR THE SECOND PAPERAn A paper will address all the issues indicated in the assignment, will be organized andwell written, with both an opening paragraph and a conclusion. A good openingparagraph introduces the subject and theme of
University of Texas - MATH - 340L
EM 319 Mechanics of SolidsUnique Numbers: 13855, 13860, 13865, 1387012Date17-Jan-1219-Jan-12DayTTh324-Jan-12T426-Jan-12Th531-Jan-12T62-Feb-12Th77-Feb-12T89-Feb-12Th914-Feb-12T101116-Feb-12Th21-Feb-12T1223-Feb-12Th
University of Texas - MATH - 340L
Version 270 Exam 1 mccord (51600)This print-out should have 34 questions.Multiple-choice questions may continue onthe next column or page nd all choicesbefore answering.13. 14. 3 correct5. 12001 10.0 pointsIn a one-dimensional particle in a box,
University of Texas - MATH - 340L
M340LLecture 1SyllabusLinear systemsM340L Lecture 1Unique number 55760Systems of linearequationsExistence anduniquenessElimination andmatrix notationAn exampleExercisesSamuel IsaacsonPracticeproblemsPractice problemsolutionsThe Universi
University of Texas - MATH - 340L
M340LLecture 2ReviewGaussianeliminationM340L Lecture 2Unique number 55760Echelon formsRow reductionParametricdescriptions ofsolution setsVectors andvectorequationsSamuel IsaacsonThe University of Texas at AustinDenitions andalgebraLinea
University of Texas - MATH - 340L
M340LLecture 3ReviewVectorsSpansM340L Lecture 3Unique number 55760Samuel IsaacsonThe University of Texas at AustinMatrices andvectorsThematrix-vectorproductLinearityLinear systemsand matricesSpansExercisesPracticeproblemsPractice prob
University of Texas - MATH - 340L
M340LLecture 4ReviewFormulations oflinear systemsSpansM340L Lecture 4Unique number 55760Samuel IsaacsonThe University of Texas at AustinSolution setsof linearsystemsHomogeneoussystemsGeneral systemsLinearindependenceThe denitionExamples
University of Texas - MATH - 340L
M340LLecture 5ReviewM340L Lecture 5Unique number 55760Samuel IsaacsonThe University of Texas at AustinSolutions of nonhomogeneoussystemsLinearindependenceLinear transformationsDenitionsRange and spanExamplesExercisesPracticeproblemsPract
University of Texas - MATH - 340L
M340LLecture 6ReviewDenitionsReview problemsM340L Lecture 6Unique number 55760Samuel IsaacsonThe University of Texas at AustinMatrices andlinear transformationsAn exampleThe matrix of alineartransformationOne-to-oneand onto mapsOne-to-one
University of Texas - MATH - 340L
M340LLecture 7ReviewDenitions andtheoremsM340L Lecture 7Unique number 55760Matrixmultiplicationand lineartransformationsMatrix algebraIdentitiesTranspositionSamuel IsaacsonThe University of Texas at AustinExercisesReview problemsPractice
University of Texas - MATH - 340L
M340LLecture 8ReviewMatrixmultiplicationNon-cancellationM340L Lecture 8Unique number 55760Samuel IsaacsonThe University of Texas at AustinMatrixinversionDenitionInversion andlinear systemsComputinginversesElementarymatrices andmatrix al
University of Texas - MATH - 340L
M340LLecture 9ReviewMatrix inversionReview exercisesM340L Lecture 9Unique number 55760Criteria forinvertibilityReviewA big theoremMatrixfactorizationsSamuel IsaacsonTriangularsystemsLUfactorizationsWhy LU ?The University of Texas at Aus
University of Texas - MATH - 340L
M340LLecture 10ReviewCriteria forinvertibilityA big theoremM340L Lecture 10Unique number 55760DeterminantsSmall matricesThe denitionProperties ofdeterminantsAlgebraicpropertiesExercisesSamuel IsaacsonReview problemsSolutionsThe Universi
University of Texas - MATH - 340L
M340LLecture 11ReviewDeterminantsReview exercisesM340L Lecture 11Unique number 55760Vector spacesThe denitionExamplesSubspacesThe denitionExamples andnon-examplesSamuel IsaacsonExercisesReview problemsSolutionsThe University of Texas at
University of Texas - MATH - 340L
M340LLecture 12ReviewVector spacesSubspacesM340L Lecture 12Unique number 55760Linear transformationsDenitionExamplesNull spaces,column spacesSamuel IsaacsonThe University of Texas at AustinDenitionExamplesExercisesReview problemsSolution
University of Texas - MATH - 340L
M340LLecture 13ReviewM340L Lecture 13Unique number 55760LinearindependenceColumn spacesand null spacesBasesDenition andexamplesBases andsubspacesSome theoremsExercisesSamuel IsaacsonReview problemsSolutionsThe University of Texas at Aus
University of Texas - MATH - 340L
M340LLecture 14ReviewCoordinatesystemsM340L Lecture 14Unique number 55760Samuel IsaacsonThe denitionExamplesVisualizingcoordinatesin R2Change-ofcoordinatesmatricesCoordinates inabstract vectorspacesDimensionThe University of Texas at Au
University of Texas - MATH - 340L
M340LLecture 15ReviewTheorems anddenitionsM340L Lecture 15Unique number 55760Row spacesThe denitionComputing basesRankChange-ofbasisSamuel IsaacsonThe University of Texas at AustinChangingbetween basesMatrices andlineartransformationsEx
University of Texas - MATH - 340L
M340LLecture 16ReviewM340L Lecture 16Unique number 55760EigenvaluesandeigenvectorsEigenvaluesandcoordinatesEigenvaluesand MATLABSamuel IsaacsonThe University of Texas at AustinWhy is thisproblemimportant?ExercisesReview problemsSolutio
University of Texas - MATH - 340L
M340LLecture 17ReviewM340L Lecture 17Unique number 55760The eigenvalueproblemLinearindependenceThecharacteristicpolynomialSimilarmatricesThe denitionsAn exampleSamuel IsaacsonMultiplicitiesExercisesThe University of Texas at AustinRevi
University of Texas - MATH - 340L
M340LLecture 18ReviewM340L Lecture 18Unique number 55760Samuel IsaacsonDenitionsExercisesMATLABExponentiationComplexeigenvaluesAn exampleReal matriceswith complexeigenvaluesExercisesReview problemsSolutionsThe University of Texas at Aus
University of Texas - MATH - 340L
M340LLecture 19ReviewM340L Lecture 19Unique number 55760DiscretedynamicalsystemsExamplesWhat happens inR2 ?Markov chainsExercisesSamuel IsaacsonReview problemsSolutionsThe University of Texas at AustinMarch 29, 20121/20Complex eigenvalu
University of Texas - MATH - 340L
M340LLecture 20ReviewThe powermethodM340L Lecture 20Unique number 55760Samuel IsaacsonThe University of Texas at AustinDierentialequationsLinear systemsAn exampleThe generalprocedureComplexeigenvaluesNondiagonalizablematricesExercisesR
University of Texas - MATH - 340L
M340LLecture 21ReviewEigenvalues andODEsAn exampleM340L Lecture 21Unique number 55760Dot productsAngles andlengthLengthCauchy-SchwarzOrthogonalitySamuel IsaacsonExercisesReview problemsSolutionsThe University of Texas at AustinApril 5,
University of Texas - MATH - 340L
M340LLecture 22ReviewM340L Lecture 22Unique number 55760Orthogonalsets andmatricesOrthogonalmatricesProjectionsSamuel IsaacsonThe University of Texas at AustinProjection ontoa lineProjection ontoa subspaceProjection anddistanceExercises
University of Texas - MATH - 340L
M340LLecture 23ReviewDenitionsExercisesM340L Lecture 23Unique number 55760FindingorthogonalbasesGram-SchmidtQR factorizationLeast-squaresproblemsSamuel IsaacsonThe normalequationsNumerical notesExercisesThe University of Texas at Austin
University of Texas - MATH - 340L
M340LLecture 24ReviewLeast-squaresproblemsM340L Lecture 24Unique number 55760The theoryAn exampleLinear regressionPageRankSamuel IsaacsonThe University of Texas at AustinApril 24, 20121/18Orthogonal projectionM340LLecture 24TheoremLet V
University of Texas - MATH - 340L
M340LLecture 25The innerproductM340L Lecture 25Unique number 55760Samuel IsaacsonThe University of Texas at AustinThe spectraltheoremTheoryAn exampleAnother spectraltheoremSimultaneousdiagonalizabilityRayleighquotientsThe denitionConstr
University of Texas - MATH - 340L
Exam Version: BName (print):EID:The UNIVERSITY of TEXAS at AUSTINDEPARTMENT of MATHEMATICSMATH 340L (55760) MIDTERM EXAMINATION 1BFebruary 23, 2012INSTRUCTIONS:1. This exam is 8 pages long. There are 9 questions.2. Answer all questions in the spa
University of Texas - MATH - 340L
Exam Version: AName (print):EID:The UNIVERSITY of TEXAS at AUSTINDEPARTMENT of MATHEMATICSMATH 340L (55760) MIDTERM EXAMINATION 1AFebruary 23, 2012INSTRUCTIONS:1. This exam is 8 pages long. There are 9 questions.2. Answer all questions in the spa
University of Texas - MATH - 340L
Math 340LMidterm exam 1A solutionsPage 1 of 71. Determine whether each of the following statements is true or false. You do not need tojustify your answers.(a) (2 points) Suppose A and B are m n and n k matrices, respectively. If thecolumns of B are
University of Texas - MATH - 340L
Math 340LMidterm exam 1B solutionsPage 1 of 71. Determine whether each of the following statements is true or false. You do not need tojustify your answers.(a) (2 points) Suppose A is an n n matrix so that A2 = 0. Then A = 0.TrueFalseSolution: Thi