MATH 218
##### MATH 218 - Probability For Business - USC Study Resources
• 37 Pages
###### Sectiont2.6

School: USC

Contents I Probability 5 7 8 8 14 21 34 59 59 65 84 84 87 91 92 107 108 117 119 124 145 1 Sets and Probability 1.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . 1.1.2

• 40 Pages
###### Sectiont3.5

School: USC

Contents I Probability 5 7 8 8 14 21 34 59 59 65 84 84 87 91 92 107 108 117 119 124 145 1 Sets and Probability 1.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . 1.1.2

• 4 Pages

School: USC

• 33 Pages
###### Sectiont2.4

School: USC

Contents I Probability 5 7 8 8 14 21 34 59 59 65 84 84 87 91 92 107 108 117 119 124 145 1 Sets and Probability 1.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . 1.1.2

• 40 Pages
###### Sectiont2.7

School: USC

Contents I Probability 5 7 8 8 14 21 34 59 59 65 84 84 87 91 92 107 108 117 119 124 145 1 Sets and Probability 1.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . 1.1.2

• 4 Pages
###### Spring 2006 Midterm

School: USC

Math 218, Spring 2006, MWF 11am Probability for Business Test I - Solutions Instructions: Try all the problems and show all your work. Answers given with little or no indication of how they were obtained may receive no credit. Leave all numerical answers

• 2 Pages
• ###### Final Fall 2004 - Spring 2006
• Register Now

School: USC

• 13 Pages

School: USC

• 9 Pages
###### Final Review Part A

School: USC

Math 218 Supplemental Instruction Spring 2008 Final Review Part A SI leaders: Mario Panak, Jackie Hu, Christina Tasooji Chapters 3, 4, and 5 Topics Covered: General probability (probability laws, conditional, joint probabilities, independence) Probabilit

• 3 Pages
###### Final Review Part B

School: USC

1. Thelifespan ofa qu een antfollowsth efollowin gd istribution : (4/5) x+1 0x<1 f(x)=c 1x3 0 x<0,x>3 (a) Findthefunction f(x) =ctha tis dis tribu ted 1x3(note:cisa cons tant). (b) Whatisth ea vera gelifespanofaqu eenan t? (c) Ifafteroneyear,th equ een a

• 14 Pages

School: USC

• 6 Pages

School: USC

• 5 Pages

School: USC

• 6 Pages
• ###### Midterm 1 Spring 2005 1
• Register Now

School: USC

• 5 Pages
• ###### Midterm 1 Spring 2005 2
• Register Now

School: USC

• 7 Pages

School: USC

• 6 Pages

School: USC

• 7 Pages

School: USC

• 43 Pages
###### Section3.4

School: USC

Contents I Probability 5 7 8 8 14 21 34 59 59 65 84 84 87 91 92 107 108 117 119 124 145 1 Sets and Probability 1.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . 1.1.2

• 32 Pages
###### Section3.3

School: USC

Contents I Probability 5 7 8 8 14 21 34 59 59 65 84 84 87 91 92 107 108 117 119 124 145 1 Sets and Probability 1.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . 1.1.2

• 1 Page
###### Ex 2.2

School: USC

Exercise 2.2 1. a, (0, 4.35, 37.35, 55.01, 103.24); b, 86.67% 3. a, (2, 6.5, 8, 8, 10); b, 12.5% 1

• 2 Pages

School: USC

• 1 Page
###### Ex 2.4

School: USC

Exercise 2.4 1. a): cfw_B, B X = B, Y = B; cfw_W, B X = W , Y = B; cfw_G, B X = G, Y = B; X b): B W G 3. a), 0.03; b), x P(X=x) 1 0.23 2 0.27 3 0.27 4 0.23 y P(Y=y) 1 0.23 2 0.27 3 0.27 4 0.23 B 1/5 1/5 1/10 Y W 1/5 1/15 1/15 G 1/10 1/15 0 cfw_B, W X = B

• 2 Pages
###### Ex 2.5

School: USC

Ex (C\.) 15 4 -.- <"hfl'mf \bel., \i ~'" To tce( Pet stt't ."-~'-"- t,'k ;x., = 72 ctMh~ Lj (\$\ - 21 '76 3 (.2 1.1 :T"tc~cfw_ l 0& \ ~ -\ -. 0 I j ,0:3 ~"."~- F*:,f \ -I (1 ,02 .O.r 2 , tAv~ ' (s .06 \- \ C) , 3 :, I'1 .3 ' , l& \ ' L \ \ , ,.2 \ ,S ) \

• 1 Page
###### Ex 2.6

School: USC

Exercise 2.6 1. b): Covariance = -0.1; Correlation = -0.0045; c): No, correlation is almost zero. 3. Covariance = -0.0451; Correlation = -0.0816; 5. a), E(X) = E(Y) = 2, because both are symmetric; b), X = 1.353, Y = 1.285 c), -0.7; d), -0.403, Not indepe

• 1 Page

School: USC

• 1 Page
###### Ex 3.2

School: USC

Exercise 3.2 1. (a), 0.6211; (b), Expected value = 49.2929, standard deviation = 4.9995; (c), [43, 55]; 3. (a), 0.4163; (b), assume binomial distribution; (c), E(X) = 6, = 2.0494; (d), By empirical rule, P( within 1 standard deviation) = 0.68. Using binom

• 1 Page
###### Ex 3.3

School: USC

(c~ ) () .7() 6c lb) o.tf~' l c) 0. ~'l6 ? :) (A) (j, '1-1-1 ~ t 5:Lrtecfw_~ ta.;trt'Yt error'S Mf' cb) 0.2011 (C)G.11 I l oc CltLT'rtf1lQ. ('([p.y k ~ \Yu19fk~ LO;I~l oHw 5 (~) (b) (c) o,3~3t i-o .~:) I . (' r') 7 ( c\) (b) C8~2\ (c ) 0.27<;, O'~1to 9

• 1 Page
###### Ex 3.4

School: USC

Exercise 3.4 1. (a), 0.10001; (b), 8,331,666.75; 1 3. (a), 17.5 minutes; (b), 4.3301; (c), 1 ; (d), 3 ; (e), 1 ; (f), 0.8683; 3 2 5. (a),0.7769; (b), 0.1447; (c), e- 2 - e- 2 ; (d), Y follows a exponential distribution with r = 1 ; 2 7. (a), 0.2643; (b),

• 4 Pages

School: USC

• 1 Page
###### Ex1.4

School: USC

Exercise 1.4 1. (a), 0.5; (b), 0.4; (c), 1; (d), 0; (e), A and B; 3. (a), 1 ; (b), 3 2 11 ; (c), 1 11 5. (a), 0.58; (b), Incorrect Men 0.42 Favorable 0.38 Unfavorable 0.2 0.2 Women 0.42 0.38 There is no gender differences. 7. (a), 43.99%; (b), 74.54%; (c)

• 2 Pages
###### Ex1.5

School: USC

E;x I~ ) \cfw_\ /. ~ - c, (3 1 loc th fif;i; rL1,\'l:'f' \1I1Z icAs) I j.L. ( by - 12 C-I ; ~:J.l ) ~cfw_+~tr \.d\k tkt ct~/uf tlive lLtfLnlY) \yYVT,~r ty. C _,_ it,'ll \.; V vl, ( C) ~ .12 ~ cJ ) .~ c; \ iC ) v, , ( e:> ( (\) 1\ f;c (b) ~ I~ lc) JL J:)c

• 55 Pages
###### Section2.1

School: USC

Contents I Probability 5 7 8 8 14 21 34 59 59 65 84 84 87 91 92 107 108 117 119 124 145 1 Sets and Probability 1.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . 1.1.2

• 53 Pages
###### Section2.5

School: USC

Contents I Probability 5 7 8 8 14 21 34 59 59 65 84 84 87 91 92 107 108 117 119 124 145 1 Sets and Probability 1.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . 1.1.2

• 24 Pages
###### Section2.2

School: USC

Contents I Probability 5 7 8 8 14 21 34 59 59 65 84 84 87 91 92 107 108 117 119 124 145 1 Sets and Probability 1.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . 1.1.2

• 52 Pages
###### Section2.2and2.3

School: USC

Contents I Probability 5 7 8 8 14 21 34 59 59 65 84 84 87 91 92 107 108 117 119 124 145 1 Sets and Probability 1.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . 1.1.2

• 45 Pages
###### Section3.1and3.2

School: USC

Contents I Probability 5 7 8 8 14 21 34 59 59 65 84 84 87 91 92 107 108 117 119 124 145 1 Sets and Probability 1.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . 1.1.2

• 6 Pages

School: USC

• 6 Pages

School: USC

• 5 Pages

School: USC

• 2 Pages

School: USC

• 1 Page

School: USC

• 2 Pages

School: USC

• 2 Pages

School: USC

• 1 Page

School: USC

• 1 Page

School: USC

• 1 Page

School: USC

• 1 Page

School: USC

• 1 Page

School: USC

• 2 Pages

School: USC

• 1 Page

School: USC

• 2 Pages

School: USC

• 6 Pages
• ###### 2013 Homework 10 Solution
• Register Now

School: USC

• 5 Pages
• ###### 2013 Homework 11 Solution
• Register Now

School: USC

• 4 Pages
• ###### 2013 Homework 1 Solution
• Register Now

School: USC

• 6 Pages
• ###### 2013 Homework 2 Solution
• Register Now

School: USC

• 7 Pages
• ###### 2013 Homework 3 Solution
• Register Now

School: USC

• 1 Page

School: USC

• 2 Pages

School: USC

• 40 Pages
###### Section 1.3

School: USC

Contents I Probability 5 1 Sets and Probability 1.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.1 Basic Denitions . . . . . . . . . . . . . . . . . . . . . 1.1.2 Venn Diagrams . . . . . . . . . . . . . . . . . . . . . . 1.1.3

• 38 Pages
###### Section 1.4

School: USC

Contents I Probability 5 1 Sets and Probability 1.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.1 Basic Denitions . . . . . . . . . . . . . . . . . . . . . 1.1.2 Venn Diagrams . . . . . . . . . . . . . . . . . . . . . . 1.1.3

• 53 Pages
###### Section 1.5

School: USC

Contents I Probability 5 1 Sets and Probability 1.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.1 Basic Denitions . . . . . . . . . . . . . . . . . . . . . 1.1.2 Venn Diagrams . . . . . . . . . . . . . . . . . . . . . . 1.1.3

• 32 Pages
###### Section 1.6

School: USC

Contents I Probability 5 1 Sets and Probability 1.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.1 Basic Denitions . . . . . . . . . . . . . . . . . . . . . 1.1.2 Venn Diagrams . . . . . . . . . . . . . . . . . . . . . . 1.1.3

• 33 Pages
###### Section 2.5

School: USC

Contents I Probability 5 1 Sets and Probability 1.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.1 Basic Denitions . . . . . . . . . . . . . . . . . . . . . 1.1.2 Venn Diagrams . . . . . . . . . . . . . . . . . . . . . . 1.1.3

• 31 Pages
###### Section 4.1

School: USC

Contents I Probability 5 1 Sets and Probability 1.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.1 Basic Denitions . . . . . . . . . . . . . . . . . . . . . 1.1.2 Venn Diagrams . . . . . . . . . . . . . . . . . . . . . . 1.1.3

• 31 Pages
###### Section 4.2

School: USC

Contents I Probability 3 1 Sets and Probability 1.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.1 Basic Denitions . . . . . . . . . . . . . . . . . . . . . 1.1.2 Venn Diagrams . . . . . . . . . . . . . . . . . . . . . . 1.1.3

• 37 Pages
###### Section 4.3

School: USC

Contents I Probability 5 1 Sets and Probability 1.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.1 Basic Denitions . . . . . . . . . . . . . . . . . . . . . 1.1.2 Venn Diagrams . . . . . . . . . . . . . . . . . . . . . . 1.1.3

• 35 Pages
###### Section 5.1

School: USC

Contents I Probability 5 1 Sets and Probability 1.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.1 Basic Denitions . . . . . . . . . . . . . . . . . . . . . 1.1.2 Venn Diagrams . . . . . . . . . . . . . . . . . . . . . . 1.1.3

• 32 Pages
###### Section 5.2

School: USC

Contents I Probability 5 1 Sets and Probability 1.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.1 Basic Denitions . . . . . . . . . . . . . . . . . . . . . 1.1.2 Venn Diagrams . . . . . . . . . . . . . . . . . . . . . . 1.1.3

• 66 Pages
###### Sections 1.1,1.2

School: USC

Contents I Probability 5 1 Sets and Probability 1.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.1 Basic Denitions . . . . . . . . . . . . . . . . . . . . . 1.1.2 Venn Diagrams . . . . . . . . . . . . . . . . . . . . . . 1.1.3

• 5 Pages
###### Exam_review_1

School: USC

MATH 218 SI Exam Review Professor Lytvak Exam Review SI Leader: Karen uscmath218si@gmail.com usc.edu/si 1. On the first day of classes at UCLA, Tommy realized that he was not happy at the school but he wasnt the only one. In fact, 55% of the students at

• 6 Pages
• ###### midt2_math218_10am_Fall2010
• Register Now
###### Midt2_math218_10am_Fall2010

School: USC

Fall 2010, Math 218, Midterm 2 Wednesday, November 3, 2010; 10:00-10:50 a.m. Instructor: Oleksandr Lytvak Name (printed): Student ID: Signature (handwritten): Discussion Time: DIRECTIONS: Please do not open your exam until you are instructed to do so. W

• 7 Pages
• ###### midt2_math218_11am_Spring2010
• Register Now
###### Midt2_math218_11am_Spring2010

School: USC

Spring 2010, Math 218, Midterm 2 Monday, March 29, 2010; 11:00-11:50 a.m. Instructor: Oleksandr Lytvak Name (printed): Student ID: Signature (handwritten): Discussion Time: DIRECTIONS: Please do not open your exam until you are instructed to do so. Writ

• 4 Pages
• ###### MIDTERM_1_Review Prolems
• Register Now
###### MIDTERM_1_Review Prolems

School: USC

MIDTERM 1 Review Ashley Things to consider Formula sheet Whats good? You should have at least basic probability formulas, shortcut expected value and standard deviation formulas for discrete and continuous if you have covered it, combinetric formulas if y

• 1 Page
• ###### Contingency_tables_example
• Register Now
###### Contingency_tables_example

School: USC

Contingency tables example. Omnicare, Inc., has 245 customers that are classified in the accompanying contingency table by the frequency with which they place a regular or an irregular order and by their payment terms, cash or credit. Order Type Regular I

• 3 Pages
###### Homework_1

School: USC

Name: _ 1 Class: Date: _ What must be filled in the blank to make the statement true? If P (A ) = 0.84, P (B ) = 0.76 and P (A or B ) = 0.90, then P (A and B ) is _. a. 0.70 2 b. 0.83 d. 0.06 Suppose Aand Bare two independent events for which P(A) = 0.20

• 3 Pages
• ###### 2013 Homework 9 Solution
• Register Now

School: USC

• 1 Page
###### Minitab1

School: USC

- 10/16/2007 11:15:09 AM - Welcome to Minitab, press F1 for help. Retrieving project from file: 'C:\DOCUMENTS AND SETTINGS\ADMINISTRATOR\MY DOCUMENTS\MINITAB.MPJ' Results for: DATASETA.MTP MTB > Describe 'Decile 1' 'Decile 2' 'Decile 3' 'Decile 4'

• 3 Pages
• ###### Midterm%201%20Solutions
• Register Now
###### Midterm%201%20Solutions

School: USC

Midterm 1 Solutions 1. Suppose that the time X (in hours) between successive commercials on a network television station has the probability density function fX (x) = 5 - x3 , where 0 < x < 1. 4 x 0 5 = 4 x - 1 x4 . 4 (a) Find the cumulative distrib

• 8 Pages
• ###### Math 218 Zygouras Homework3
• Register Now

School: USC

• 2 Pages
• ###### Math 218 Zygouras Homework4
• Register Now
###### Math 218 Zygouras Homework4

School: USC

• 2 Pages

School: USC

Fall 2004: #1 #2 #3 #4 #5 #6 #7 #8 #9 # 10 (a) 0.85, (b) not independent, (d) 0.95 (b) 5/14, 9/14, (c) 135/154 (a) 0.3713, (b) binomial, n = 36, p = 0.3713, (c) 0.161 (a) 2/5, (b) 11/16, (c) 0.3273 (a) 22, 5.8822, (b) \$7400, \$1962.14 (a) 0.4732, (b

• 61 Pages
###### Sheets

School: USC

Exercises to Accompany "Statistics for Management and Economics," by Watson et al written (except where indicated) and compiled by Cymra Haskell Please note: These exercises are meant to supplement rather than replace the exercises in the text. 2

• 2 Pages
###### Mt1sol

School: USC

Math 218 (Spring 2008) Solutions to MT1 TA: Wei Lin 1. (a) Simply add up each row and column: 1 problem Brand A Brand B Brand C Total 20 15 10 45 2 problems 12 7 6 25 3 problems 3 3 4 10 Total 35 25 20 80 (b) P (Brand A and 1 problem) = 20/80 = 1/4.

• 2 Pages
###### Q6-9sol

School: USC

Math 218 (Spring 2008) Solutions to Quizzes 69 TA: Wei Lin 1 1 Q6.1. (a) P (0 < X < 1) = 0 3 f (x) dx = 0 3 2 x2 x dx = 25 25 x2 3 1 1 = 0 1 . 25 (b) P (1 < X < 3) = 1 5 f (x) dx = 1 5 2 x dx = 25 25 5 = 32 - 12 8 = . 25 25 5 2 2 2 10 2

• 2 Pages
###### Q10-13sol

School: USC

Math 218 (Spring 2008) Solutions to Quizzes 1013 TA: Wei Lin Q10. (a) X = (2 + 6 + 10 + 8 + 7)/5 = 33/5 = 6.6. (b) S = 1 22 + 62 + 102 + 82 + 72 - 5(6.6)2 = 8.8 = 2.9665. 5-1 S (c) = (1-.95)/2 = .025 and t4,.025 = 2.776. Thus, the confidence inter

• 1 Page
###### Quiz2sol

School: USC

Math 126 Calculus II (Fall 2006) Quiz 2 (10 pts) Name: Section (circle one): 8AM 9AM Instructions: Read each question carefully, clearly mark your answers, and remember to show your work. 1. (3 pts) Use integration by parts to evaluate Solution: Let

• 1 Page
###### Quiz4sol

School: USC

Math 126 Calculus II (Fall 2006) Quiz 4 (10 pts) Name: Section (circle one): 8AM 9AM Instructions: Read each question carefully, clearly mark your answers, and remember to show your work. 1. (4 pts) Find the area of the region bounded by the curves

• 6 Pages
###### Mario14b_Spring08

School: USC

Course: Exam 1 Solution

MATH 218 SI Session (Spring 2008) SI Leader: Mario Week 14 Worksheet Tuesday (4/15/08) Professor: Zygouras/Dumett www.usc.edu/si 1. The number of students entering the bookstore is Poisson distributed with an average rate of 2 students every 3 minu

• 2 Pages
###### PvalueProblems

School: USC

Course: Exam 1 Solution

SAMPLE QUESTIONS INVOLVING P-VALUES TAKEN FROM MATH 218, FALL 1999 Problem 1. For which of the given P-values would the null hypothesis be rejected when performing a level 0.05 test? (a) .001 (b) 0.021 (c) 0.078 (d) 0.047 (e) 0.148 Problem 2. For a

• 2 Pages
###### Syllabus

School: USC

Course: Exam 1 Solution

Math 218, Spring 2004 General Information Lectures: Discussions: 50304R, 10-11 MWF, GFS 116 Register for ONE section below. 50305R, 8-9 TTh, KAP 159 50306R, 9-10 TTh, KAP 159 50307R, 10-11 TTh, KAP 159 Cymra (pronounced `Kimra') Haskell Office: KAP 1

• 16 Pages
###### Mario11ab_Spring08

School: USC

MATH 218 SI Session (Spring 2008) SI Leader: Mario Week 11 Worksheet Wednesday (3/26) Professor: Zygouras/Dumett www.usc.edu/si 1. Raz and Zar are both running for the position of President of Stuffed Animal Kingdom. To win, a candidate must receiv

• 6 Pages
###### Mario14a_Spring08

School: USC

MATH 218 SI Session (Spring 2008) SI Leader: Mario Week 14 Worksheet Monday (4/14/08) Professor: Zygouras/Dumett www.usc.edu/si 1. Students from a certain university choose one of three career paths-business, law or medicine. 50% of the students ch

• 6 Pages
• ###### Some problems from Spring 2001
• Register Now
###### Some Problems From Spring 2001

School: USC

Course: Calculus

• 9 Pages
• ###### Remaining Spring 2001 problems
• Register Now
###### Remaining Spring 2001 Problems

School: USC

Course: Calculus

• 3 Pages
• ###### Midterm%201%20Solutions
• Register Now
###### Midterm%201%20Solutions

School: USC

Midterm 1 Solutions 1. Suppose that the time X (in hours) between successive commercials on a network television station has the probability density function fX (x) = 5 - x3 , where 0 < x < 1. 4 x 0 5 = 4 x - 1 x4 . 4 (a) Find the cumulative distrib

• 4 Pages
###### 2005%20fall

School: USC

Math 218 Final Examination: Fall 2005 Directions. On this examination, you may use a calculator and one 8-1/2 by 11-inch sheet of handwritten notes (both sides may be written on). No books or other notes are permitted. When an answer box is provided,

• 8 Pages
###### 1999 Fall Solutions

School: USC

Course: Calculus

Math 218 Final Exam Solved Fall 1999 The solutions which we reproduce below are far more elaborate than what was expected on the final. After all, not many students have laser printers and Mathematica running on a laptop during the exam! Our purpo

• 3 Pages

School: USC

Course: Calculus

MATH 218 FINAL EXAM Fall 1999 I NSTRUCTIONS . Every numerical answer should be simplified to a fraction or a decimal, unless otherwise stated. You must show your work and justify your methods to obtain full credit. Use the continuity correction wh

• 12 Pages
###### 2005 Spring Solutions

School: USC

Course: Calculus

MATH 218 FINAL EXAM SOLUTIONS MAY 3, 2005 1d) Suppose the tested widget is defective. What is the chance that it came from B? 1e) Suppose the tested widget is defective. What is the chance that it came from C? Solutions prepared by Ronald Bruck, Ma

Back to course listings