We aren't endorsed by this school 
MATH 2420  George Mason Study Resources
 George Mason
 Unknown
 Find Textbooks
We don't have any documents tagged to this course yet.
Help us build our content library by uploading relevant materials from your courses.
George Mason  MATH Top Documents

Homework 2 Solutions
School: George Mason
Course: Ordinary Differential Equations
Math 677. Fall 2009. Homework #2 Solutions. Part I. Exercises are taken from Diential Equations and Dynamical Systems by Perko, 3rd edition. Problem Set 6: # 4 The system x = Ax with 1 1 0 0 1 1 0 0 A= 0 0 0 2 0 0 1 2 has eigenvalues 1,2 = a1 ib1 = 1

Homework 1 Solutions
School: George Mason
Course: Ordinary Differential Equations
Math 677. Fall 2009. Homework #1 Solutions. Part I. Exercises are taken from Diential Equations and Dynamical Systems by Perko, 3rd edition. Problem Set 2: # 3 Write the following linear DE with const coecients in the form of the linear system x = Ax and

Lecture 4
School: George Mason
Course: Ordinary Differential Equations
a /W4577  Lecnrc + ,hvdpl )rr,  2.r?y2, I ennk^ t'ul a*alcx 2j =q * i4. Vr,.Vk)Wt'. lf4, s u,!iu'  =a  i.l W'Xry' ., VuVc*, 4,+, =[U, ihr/.tu$cfw_& ., V,UJ a*/ t Bt. o I \r I I . 'B;l B; ry b a&* "cfw_ tr,*ft"n c^) B \/ = Pt*P=f '/t*atfe,nto =(^::.

Lecture 9
School: George Mason
Course: Ordinary Differential Equations
,lt fhla'rt 677 , Leattuc ? , h/ha4r. C/4ea&,a cc fttou.r*o Lenr>1.1 ftF:+ cfw_^ G,D < 6t cuufr:? e. V cav,?aeb te* c'f D / ).ilrA.c fr 3u a.tfi*aa Lat, (r^, y*) e D , tL (c,r) ?, (t)  haoh*trdb c*. W I 4[isfir(q*) f ?@t*.qu, .tcl, ol f* =';t;!r='^ I,

Lecture 6
School: George Mason
Course: Ordinary Differential Equations
elA  rcat)hraL7OEs (f=(k, 1(a,t) icfw_ f b+s aat 4,P, o, t + dutou,ta4 c6tfct' En tvnl)u,n' ce.tt 4) tf $ iJ Cnt*t'utau4, ra Ucitlt a, S&AOn ' ! 'A& eatt &, ,wnu$yil =g*Z/" o :r:"=(;h). o) ,\ = f(.) r) o*oA G' hrt so sob,rt'*o x&)=;q t*r t' fr;i i,hbe

Lecture 2
School: George Mason
Course: Ordinary Differential Equations
ls Expor*ntt"ala a/ lflafr errz 2pznt*ns ie ctu'" z /., lR' ' lR n fl'azat q,er*/r G l tR^) t" ' rrTl = ra * I rft )l , rxl = (i n,)'  u ccfw_r,/za', \'' ' Lrcfw_s i 4 /ir11 7O, ltTr/=o e)T=o t' z r;l'zg" /nf= ^n*f Axf'. Zxia ^,".(!/;ff1)1" t = 'n

Homework 3 Solutions
School: George Mason
Course: Ordinary Differential Equations
Math 677. Fall 2009. Homework #3 Solutions. Part I. Exercises are taken from Diential Equations and Dynamical Systems by Perko, 3rd edition. Problem Set 1: # 4 IVP x = x3 , x(0) = 2 has solution in the form x(t) = 1 all t (, 8 ) and lim x(t) = . 2 , 18t

Lecture 3
School: George Mason
Course: Ordinary Differential Equations
tl , We la.eAr^) . fl ?aqa'ru lrut h tlt'Jry Evl.i,* x4c*'*, Carr. + h" ?taZ &sfiaa/ 2tr Z + ght , PeL P' uh*. tL=(x', c ('1, lr^l P=iS r=l) o 'g'/  tl Cr*.T, cfw_ + \ f=tr aa*aa*) F^ l;nu,* ahel*q: J fteR*x2t, w;(A a7*abcs JLC 2J=4)t;3; , i't,"h