We aren't endorsed by this school

MATH 2420 - George Mason Study Resources

We don't have any documents tagged to this course yet.

Help us build our content library by uploading relevant materials from your courses.

George Mason | MATH Top Documents
  • 2 Pages Homework 2 Solutions
    Homework 2 Solutions

    School: George Mason

    Course: Ordinary Differential Equations

    Math 677. Fall 2009. Homework #2 Solutions. Part I. Exercises are taken from Diential Equations and Dynamical Systems by Perko, 3rd edition. Problem Set 6: # 4 The system x = Ax with 1 1 0 0 1 1 0 0 A= 0 0 0 2 0 0 1 2 has eigenvalues 1,2 = a1 ib1 = 1

  • 3 Pages Homework 1 Solutions
    Homework 1 Solutions

    School: George Mason

    Course: Ordinary Differential Equations

    Math 677. Fall 2009. Homework #1 Solutions. Part I. Exercises are taken from Diential Equations and Dynamical Systems by Perko, 3rd edition. Problem Set 2: # 3 Write the following linear DE with const coecients in the form of the linear system x = Ax and

  • 7 Pages Lecture 4
    Lecture 4

    School: George Mason

    Course: Ordinary Differential Equations

    a /W4577 - Lecnrc + ,hvdpl )rr, - 2.r?y2, I ennk^ t'ul a*alcx 2j =q * i4. Vr,.Vk)Wt'. lf4, s u,!iu' - =a | i.l W'Xry' ., VuVc*, 4,+, =[U, ihr/.tu$cfw_& ., V,UJ a*-/ t Bt. o I \r I I . 'B;l B; ry b a&* "cfw_ tr,*ft"n c^) B \/ = P-t*P=f '/t*atfe,nto =(^:-:.

  • 5 Pages Lecture 9
    Lecture 9

    School: George Mason

    Course: Ordinary Differential Equations

    ,lt fhla'rt 677 , Leattuc ? , h/ha4r. C/4ea&,a cc fttou.r*o Lenr>1.1 -ftF:+ cfw_^ G,D < 6t cuufr:-? e. V cav,?aeb te* c'f D / ).ilrA.c fr 3u a.tfi*aa Lat, (r^, y*) e D , tL (c,r) ?, (t) - haoh*trdb c*. W I 4[isfir(q*) f ?@-t*.qu, .tcl, ol f* =';t;!r='^ I,

  • 4 Pages Lecture 6
    Lecture 6

    School: George Mason

    Course: Ordinary Differential Equations

    elA - rcat)hraL7OEs (f=(k, 1(a,t) icfw_ f b+s aat 4,P, o, t + dutou,t|a4 c6tfct' En tvnl)u,n' ce.tt 4) tf $ iJ Cnt*t'utau4, ra Ucitlt a, S&AOn ' -! 'A& eatt &, ,wn-u$yil =g*Z/" o :r:"=(;h). o) ,\ = f(.) r) o*oA G' hrt so sob,rt'*o x&)=;q t*r t' fr;i i,hbe

  • 3 Pages Lecture 2
    Lecture 2

    School: George Mason

    Course: Ordinary Differential Equations

    ls Expor*n-tt"ala a/ lflafr errz 2pznt*ns ie ctu'-" z /., lR' -' lR n fl'azat q,er*/-r G l tR^) t" ' rrTl = ra * I rft )l , rxl = (i n,)' - u ccfw_r,/za', \'-' ' Lrcfw_s i 4 /ir11 7-O, ltTr/=o e)T=o t' z r;l'zg" /nf= ^n*f Axf'. Zxia ^,".(!/;ff1)1" t = -'n

  • 3 Pages Homework 3 Solutions
    Homework 3 Solutions

    School: George Mason

    Course: Ordinary Differential Equations

    Math 677. Fall 2009. Homework #3 Solutions. Part I. Exercises are taken from Diential Equations and Dynamical Systems by Perko, 3rd edition. Problem Set 1: # 4 IVP x = x3 , x(0) = 2 has solution in the form x(t) = 1 all t (, 8 ) and lim x(t) = . 2 , 18t

  • 6 Pages Lecture 3
    Lecture 3

    School: George Mason

    Course: Ordinary Differential Equations

    tl , We la.eAr^) . fl ?aqa'ru lrut h tlt'Jry Evl.i,* x4c*'*, Carr. + h" ?taZ &sfiaa/ 2tr- -Z + ght -, PeL P-' uh*. tL=(x', c ('1, lr^l P=iS r=l) o 'g'/ - tl Cr*.T-, cfw_ + \ f=tr aa*aa*) F-^ l;nu,* ahel*q: J| fteR*x2t, w;(A a7*abcs JLC 2J=4)t;3; , i't,"h

Back to course listings