7 Million Study Materials
From students who've taken these classes before
Personal attention for all your questions
Learn
93% of our members earn better grades
George Mason | ASTR 228

#### 14 sample documents related to ASTR 228

• George Mason ASTR 228
Keplerian Motion Simulator A simulator to demonstrate application of Kepler\'s Laws of planetary motion for two fictitious planets orbiting the Sun. From an input of semi-major axes, eccentricities, and orientations of the orbital plane for the two pl

• George Mason ASTR 228
Binary Star Orbits Input Data Semi-major Axis of Relative Orbit (AU) = Eccentricity of Relative Orbit = Ratio of Mass of Primary Star to Secondary Star = Mass of Primary Star (solar masses) = Inclination Normal to Orbital Plane to Line of Sight (degr

• George Mason ASTR 228
Planck Function Input Quantities Delta Lambda = Initial Lambda = Temperature: T1 (K) = T2 (K) = T3 (K) = 100 1000 10000 2000 3000 c1/ = 2hc2 = c2 = hc/k = T4 (K) = T5 (K) = T6 (K) = T1 (K) = c2/T 14.3877 13.0797 11.9898 11.0675 10.2769 9.5918 8.992

• George Mason ASTR 228
Hydrogen Excitation and Ionization - Boltzmann a Mod = 0.43 Er(erg/eV)= 1.6021E-12 k (ergs/K) = 1.3807E-16 k (eV/K) = 8.6174E-05 A = 5039.558366 log10 Pe = 2.47712 Tinitial (K) = 2000 T (K) = 100 Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1

• George Mason ASTR 228
Solar Abundances, Allen\'s Astrophysical Quantitites, 2000, Page 29 Atomic Element H He C N O Ne Na Mg Al Si S Ar Ca Fe Ni Number 1 2 6 7 8 10 11 12 13 14 16 18 20 26 28 log Abundance 12.00 10.99 8.56 8.05 8.93 8.09 6.33 7.58 6.47 7.55 7.21 6.56 6.3

• George Mason ASTR 228
Interior Model for Evolved Sun, by Pierre Demarque and David Guenther, Allen, Table 14.2 Basic Assumptions: No rotation, no diffusion, no magnetic pressure Xsurface = 0.6937 Xcenter = 0.3550 Ysurface = 0.2875 Zsurface = 0.0188 r r/Rsun 0.00000 0.0070

• George Mason ASTR 228
Rosseland Mean Opacity log Temperature (106 K) 0.006 0.007 0.008 0.009 0.010 0.011 0.012 0.014 0.016 0.018 0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055 0.060 0.070 0.080 0.090 0.100 0.120 0.150 0.200 0.250 0.300 0.400 0.500 0.600 0.800 1.000 1.2

• George Mason ASTR 228
Kramers Opacity for Bound-Free, Free-Free, and Electron Scattering T(start) = 3.00 del exponent T = 0.50 X = 0.6937 Y = 0.2875 Z = 0.0188 0.01 f-f 2 (cm /g) 2.1021E+10 3.7381E+08 6.6474E+06 1.1821E+05 2.1021E+03 3.7381E+01 6.6474E-01 1.1821E-02 2.102

• George Mason ASTR 228
Basic Data for the Sun, Allen\'s Astrophysical Quantities, Page 340 Mass (g) = Radius (cm) = Volume (cm3) = Surface Area (cm2) = Mean Density (g/cm3) = Surface Gravity (cm/s2) = 1.9890E+33 6.9551E+10 1.4122E+33 6.0870E+22 1.4090E+00 2.7400E+04 0 S

• George Mason ASTR 228
Zero-Age Main Sequence Models - Hansen & Kawaler Initial Guesses Tc (K) R (cm) 6.5300E+06 1.7080E+10 8.1660E+06 2.8509E+10 1.0188E+07 3.9938E+10 1.2210E+07 5.1367E+10 1.4419E+07 6.9321E+10 1.6695E+07 8.6472E+10 1.9053E+07 9.1508E+10 2.1087E+07 1.0300

• George Mason ASTR 228
Theoretical Physical Continuum Fluxes, Allen, Page 394 log g = X,Y,Z = 4.00 solar log F (ergs/cm2*s*A) Wavelength (A) 506 890 920 1482 2012 2506 3012 3636 3661 4012 4512 5025 5525 6025 7075 8152 8252 10050 14594 27000 50000 100000 200000 Teff (K) = 5

• George Mason ASTR 228
Distance Units Conversion Table Conversion Factors: km/AU= 1.49598E+08 km/ly= 9.46073E+12 km/pc= 3.08568E+13 AU/ly= 6.32411E+04 AU/pc= 2.06265E+05 Conversion To AU ly 6.68459E-09 1.05700E-13 1.00 1.58125E-05 6.32411E+04 1.00 2.06265E+05 3.26156E+00

• George Mason ASTR 228
Calibration of MK Spectral Types, Allen\'s Astrophysical Quantities, Table 15.7, Page 388 Absolute Visual Magnitude MV -5.70 -4.50 -4.00 -2.45 -1.20 -0.25 0.65 1.30 1.95 2.70 3.10 3.50 4.00 4.40 4.70 5.10 5.50 5.90 6.40 7.35 8.80 9.90 12.30 0.90 0.80

• George Mason ASTR 228
Age of the Universe: Numerical Integration of the Friedmann-Lemaitre Equations f Ho (km/s/Mpc) = Error Ho (km/s/Mpc) = 71.00 71.00 o = Error o = GM = AL = X= OS = 0.27 0.27 5.21567777E+00 0.00000000E+00 1.15542325E+00 1.66589283E+00 Hubble Time tH (