MATH 155A FALL 13SOLUTIONS TO THE PRACTICE MIDTERM 2.Question 1. Findy0.(a)y=1√x-15√x3.(b)y=tanx1 + cosx.(c)y=x√21+πcosx.(d)y=1sin(x-sinx).(e)y= sin2(cos(psin(πx)).Solution. Direct application of the differentiation rules yields:(a)y0=35x5√x3-12x√x.(b)y0=(1+cosx) sec2x+tanxsinx(1+cosx)2.(c)y0=√21 +πx√21+π-1cosx-x√21+πsinx.(d)y0=-cos(x-sinx)(1-cosx)sin2(x-sinx).(e)y0=-πsin(cos√sin(πx)) cos(cos√sin(πx)) sin√sin(πx) cos(πx)√sin(πx).Question 2. Find an equation for the tangent line and normal line to the curve at the givenpoint.(a)y= (1 + 2x)2,(1,9).(b)y=√xx+ 1,(4,0.4).(c)x2+ 2xy-y2+x= 2,(1,2).Solution.
Get answer to your question and much more