MATH 100 (L1)Introduction to Multivariable CalculusSpring 2006-07¥Class WorksheetChapter 3Partial Derivatives1.(Limits)Evaluate the limits (if they exist).(a)lim(x,y)→(1,-3)e2x-y2.(b)lim(x,y)→(1/2,π)xy2sinxy.(c)lim(x,y)→(0,0)x3+y3x+y.(d)lim(x,y)→(0,0)x4-16y4x2+ 4y2.(e)lim(x,y)→(0,0)xyx2+y2.(f)lim(x,y)→(0,0)x-yx2+y2.(g)lim(x,y)→(0,0)cosxyx+y.(h)lim(x,y)→(0,0)2x2yx4+y2.(i)lim(x,y)→(0,0)xln(|x|+|y|).Solution(a) By direct observation,lim(x,y)→(1,-3)e2x-y2=e2(1)-(-3)2=e2-9=e-7.The limit exists.(b)f(x, y) =xy2sinxyis continuous (everywhere), it follows thatlim(x,y)→(1/2,π)f(x, y) =f(12, π),orlim(x,y)→(1/2,π)xy2sinxy= (12)(π)2sin(π2) =π22.The limit exists.(c) Note thatf(x, y) = (x3+y3)/(x+y)is defined at all points of thexy-plane except the origin(0,0).We can still ask whetherlim(x,y)→(0,0)f(x, y)exists or not.The reason behind iswhetherf(0,0)is defined or nothas nothing to do with the existence of the limit. By existence of limitswe take care of the function valuesf(x, y)when the points(x, y)areclose to(0,0)but notexactly equal to(0,0).By this problem, since(x, y)6= (0,0),we can do cancellation,lim(x,y)→(0,0)x3+y3x+y=lim(x,y)→(0,0)(x+y)(x2-xy+y2)x+y=lim(x,y)→(0,0)(x2-xy+y2)=(0)2-(0)(0) + (0)2=0.The limit exists.(d) We can do cancellation,lim(x,y)→(0,0)x4-16y4x2+ 4y2=lim(x,y)→(0,0)(x2-4y2)(x2+ 4y2)x2+ 4y2=lim(x,y)→(0,0)(x2-4y2)=(0)2-4(0)2=0.The limit exists.(MATH100)worksheet-ch3-sol.pdf downloaded by twuac from at 2014-02-26 20:42:36. Academic use within HKUST only.