{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

output assign 7 - Rocket Dataset 07:36 Friday March 5 2004...

Info icon This preview shows pages 1–7. Sign up to view the full content.

View Full Document Right Arrow Icon
Rocket Dataset 07:36 Friday, March 5, 2004 1 The GLM Procedure Class Level Informat ion Class Levels Values ctr 4 A B C D mix 5 1 2 3 4 5 Number of observat i ons 20 Rocket Dataset 07:36 Friday, March 5, 2004 2 The GLM Procedure Dependent Variab le : thrust Sum of Source DF Squares Mean Square F Value Pr > F Model 7 2679.400000 382.771429 150.11 <.0001 Error 12 30.600000 2.550000 Corrected Total 19 2710.000000 R-Square Coeff Var Root MSE thrust Mean 0.988708 0.065553 1.596872 2436.000 Source DF Type II I SS Mean Square F Value Pr > F ctr 3 1802.400000 600.800000 235.61 <.0001 mix 4 877.000000 219.250000 85.98 <.0001
Image of page 1

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Rocket Dataset 07:36 Friday, March 5, 2004 3 The GLM Procedure Source Type II I Expected Mean Square ctr Var(Error ) + 5 Var(ct r ) mix Var(Error ) + Q(mix) Rocket Dataset 07:36 Friday, March 5, 2004 4 The GLM Procedure Tests of Hypotheses for Mixed Model Analys is of Variance Dependent Variab le : thrust Source DF Type II I SS Mean Square F Value Pr > F ctr 3 1802.400000 600.800000 235.61 <.0001 mix 4 877.000000 219.250000 85.98 <.0001 Error : MS(Error ) 12 30.600000 2.550000
Image of page 2
Rocket Dataset 07:36 Friday, March 5, 2004 5 Least Squares Means thrust Standard LSMEAN mix LSMEAN Error Pr > |t | Number 1 2435.75000 0.79844 <.0001 1 2 2446.00000 0.79844 <.0001 2 3 2437.75000 0.79844 <.0001 3 4 2425.25000 0.79844 <.0001 4 5 2435.25000 0.79844 <.0001 5 Least Squares Means for Effect mix t for H0: LSMean(i )=LSMean(j ) / Pr > |t | Dependent Variab le : thrust i / j 1 2 3 4 5 1 - 9.07755 - 1.77123 9.298956 0.442807 <.0001 0.1019 <.0001 0.6658 2 9.077553 7.306323 18.37651 9.52036 <.0001 <.0001 <.0001 <.0001 3 1.77123 - 7.30632 11.07019 2.214037 0.1019 <.0001 <.0001 0.0469 4 - 9.29896 - 18.3765 - 11.0702 - 8.85615 <.0001 <.0001 <.0001 <.0001 5 - 0.44281 - 9.52036 - 2.21404 8.856149 0.6658 <.0001 0.0469 <.0001 NOTE: To ensure overal l protect i on level , only probabi l i t i e s associa ted with pre- planned comparisons should be used.
Image of page 3

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Rocket Dataset 07:36 Friday, March 5, 2004 6 Variance Components Estimat ion Procedure Class Level Informat ion Class Levels Values ctr 4 A B C D mix 5 1 2 3 4 5 Number of observat i ons 20 Dependent Variab le : thrust Type 1 Analys is of Variance Sum of Source DF Squares Mean Square Expected Mean Square mix 4 877.000000 219.250000 Var(Error ) + Q(mix) ctr 3 1802.400000 600.800000 Var(Error ) + 5 Var(ct r ) Error 12 30.600000 2.550000 Var(Error ) Corrected Total 19 2710.000000 . . Type 1 Estimates Variance Component Estimate Var(ct r ) 119.65000 Var(Error ) 2.55000
Image of page 4
Rocket Dataset 07:36 Friday, March 5, 2004 7 Variance Components Estimat ion Procedure Class Level Informat ion Class Levels Values ctr 4 A B C D mix 5 1 2 3 4 5 Number of observat i ons 20 Dependent Variab le : thrust REML Itera t i ons Itera t i on Object i ve Var(ct r ) Var(Error ) 0 30.4279066114 119.6500000000 2.5500000000 1 30.4279066114 119.6500000000 2.5500000000 Convergence cr i te r i a met. REML Estimates Variance Component Estimate Var(ct r ) 119.65000 Var(Error ) 2.55000 Asymptot i c Covariance Matr ix of Estimates Var(ct r ) Var(Error ) Var(ct r ) 9625.7 - 0.21675 Var(Error ) - 0.21675 1.08375
Image of page 5

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Rocket Dataset 07:36 Friday, March 5, 2004 8 The Mixed Procedure Model Informat ion Data Set WORK.ROCKET Dependent Variab le thrust Covariance Structure Variance Components Estimat ion Method REML Residual Variance Method Prof i l e Fixed Effects SE Method Model- Based Degrees of Freedom Method Containment Class Level Informat ion Class Levels Values ctr 4 A B C D mix 5 1 2 3 4 5 Dimensions Covariance Parameters 2 Columns in X 6 Columns in Z 4 Subjects 1 Max Obs Per Subject 20 Observat ions Used 20 Observat ions Not Used 0
Image of page 6
Image of page 7
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern