# unit6 - Hardegree Intermediate Logic Unit 6 Derivations in...

This preview shows pages 1–4. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Hardegree, Intermediate Logic ; Unit 6: Derivations in Description Logic 1 of 9 Unit 6: Derivations in Description Logic 1. EXERCISES Directions: For each of the following, construct a formal derivation of the conclusion (indicated by "/") from the premises (if any). In cases in which two formulas are separated by '//', construct a derivation of each formula from the other. 1. EXERCISE SET A 1. 2200 xFx ; 5 x[x = t] / F[t] 2. 2200 xFx ; 5 x[x = x] / 5 xFx 3. F[t] ; 5 x[x = t] / 5 xFx 4. / 2200 x(Fx ² 5 yFy) 5. / 2200 x( 2200 yFy ² Fx) 6. / 2200 x 5 y[x = y] 7. / 2200 x 2200 y{x = y ² (Fx – Fy)} 8. ~ 5 x[x = x] // 2200 x(Fx & ~ Fx) 9. R[s,t] ; 5 x[x = s] / 5 xR[x,t] 10. ~ 5 x 5 y[x = y] // 2200 x[x & x] 2. EXERCISE SET B 11. / 2200 x 5 y[x = y] 12. / 2200 x(x = • yFy – 2200 y(Fy – y = x)) 13. 5 x[x = • xFx] / 2200 x(Fx – x =• xFx) 14. 5 x[x = • xFx] / F[ • xFx] 15. 5 x[x = • xFx] // 5 x 2200 y(Fy – y = x) 16. / 2200 x[x = • y[y = x]] 17. / 2200 x 2200 y { x=y ↔ •z [z =x ] = •z [ z=y ] } 18. / 2200 x{Fx – F[ • y[y = x]]} 19. / 2200 x 2200 y{x = y ² [ • zRxz = • zRyz]} 20. 5 x 2200 y(Fy – y = x) / 2200 x(Fx – x =• xFx) 21. G[ • xFx]; 5 x[x = • xFx] / 5 x(Fx & Gx) 22. G[ • xFx] ; 5 x[x = • xFx] / 5 x( 2200 y(Fy – y = x) & Gx) 23. G[ • xFx] ; ~ 5 xGx / ~ 5 x[x = • xFx] 24. 5 x 2200 y{Fy – y = x} / 5 x(Fx & x =• xFx) Hardegree, Intermediate Logic ; Unit 6: Derivations in Description Logic 2 of 9 3. EXERCISE SET C 25. 5 x{ 2200 y(Fy – y = x) & Gx} / G[ • xFx] 26. 2200 x{Fx ² x =• xFx} / 5 xFx ² F[ • xFx] 27. t = • xFx ; 5 x[x = t] / 5 x{Fx & 2200 y[Fy ² y = x]} 28. Fa ; 2200 x 2200 y{(Fx & Fy) ² x = y} / a = • xFx 29. t = • xFx ; 5 x 5 y{x & y & Fx & Fy} / ~ 5 x[x = t] 30. 5 x 2200 y([y & t] – y = x) / 2200 x([x = t] ∨ [x =• x[x & t]]) 31. 2200 x 5 y 2200 z(Rxz – z = y) ; 2200 x 2200 y(Rxy ² Ryx) / 2200 x[ • yRxy = • yRyx] 32. 5 x 2200 y(Fy ² y = x) / 2200 x(Fx ² x =• xFx) 33. ~ F[ • xFx] ; 5 xFx / 5 x 5 y{x & y & Fx & Fy} 34. 2200 x(Fx ² Gx) ; 5 x 2200 y(Gy – y = x) / 2200 x(Fx ² [x = • xGx]) 35. 5 x 2200 y{Fy ² y = x} / 2200 x(Fx ² F[ • xFx]) Hardegree, Intermediate Logic ; Unit 6: Derivations in Description Logic 3 of 9 2. ANSWERS TO UNIT 6 EXERCISES #1: (1) 2200 xFx Pr (2) 5 x[x = t] Pr (3) › : F[t] DD (4) | a = t 2, 5 O (5) | Fa 1, 2200 O (6) | F[t] 4,5,LL #2: (1) 2200 xFx Pr (2) 5 x[x = x] Pr (3) › : 5 xFx 5, 5 I (4) | a = a 2, 5 O (5) | Fa 1, 2200 O #3: (1) F[t] Pr (2) 5 x[x = t] Pr (3) › : 5 xFx 5, 5 I (4) | a = t 2, 5 O (5) | Fa 1,4,LL #4: (1) › : 2200 x(Fx ² 5 yFy) UCD (2) | Fa As (3) |› : 5 yFy 2, 5 I #5: (1) › : 2200 x( 2200 yFy...
View Full Document

## This note was uploaded on 04/09/2008 for the course PSYCH 201 taught by Professor Hardegree during the Spring '08 term at UMass (Amherst).

### Page1 / 9

unit6 - Hardegree Intermediate Logic Unit 6 Derivations in...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online