**Unformatted text preview: **det(P)=1 Find the determinant of the matrix A=[-2,0,0,0;3,1,0,0;-2,4,4,0;-5,-1,-3,-3] det(A)=24 If A=[6,-1,-2,5;0,-2,-3,4;0,0,-9,-4;0,0,0,9]. Then det(A)=972 Find the determinant of the matrix M=[3,0,0,-3;1,0,-3,0;0,2,0,-1;0,2,-2,0] det(M)=6 Find the determinant of the matrix M=[-3,0,0,-2,0;3,0,-2,0,0;0,2,0,0,-3;0,0,0,3,3;0,-1,3,0,0] det(M)=-54 A=[a,9,5;a,-4,5;8,1,a], fins all values of A that make the determinant of A=0. Enter the values of a as a comma separated list: (-0-sqrt(27040))/(-13*2), (-0+sqrt(27040))/(-13*2) Find k such that the matrix M=[-4,-1,2;-12,1,10;4+k,3,6] is singular. k=-8 Find the determinant of the n x n matrix A with 9s on the diagonal, 1s above the diagonal and 0s below the diagonal. det(A)=9^n...

View
Full Document

- Fall '08
- ringhofer
- Linear Algebra, Determinant, Invertible matrix, Det