**Unformatted text preview: **If a 4 x 4 matrix A with rows v1,v2, v3, and v4 had determinant detA=3, then det[v1;9v2+8v4;v3;2v2+5v4]=87 If A and B are n x n matrices, check the true statements below: A. If two row interchanges are made in succession, then the determinant of the new matrix is equal to the determinant of the original matrix. B. If seta is zero, then two rows or two columns are the same, or a row or a column is zero. C. The determinant of A is the product of the diagonal entries in A. D. det(AT)=(-1)det(A) Solution = A Given det[a,b,c;d,e,f,g,h,i]=-1, find the following determinants. det[g,h,i;a,b,c;d,e,f]=-1 det[a,b,c;-7d+a,-7e+b,-7f+c;g,h,i]=7 det[-7d+a,-7e+b,-7f+c;d,e,f;g,h,i]=-1 If B=[1,0,1;-1,1,2;2,2,-2] then det(B^5)=-100000...

View
Full Document

- Fall '08
- ringhofer
- Linear Algebra, Determinant, Vector Space, English-language films, Characteristic polynomial, Invertible matrix, Complex number, d. det