Sample.ques.Test4 - Antiderivatives 1 u 3 2u 7du 2 3 4 5 x(1 x 4)dx dw w4 sec t(tan t cos t)dt 1 sin 2 v csc vdv w2 3w5 Riemman Sums and the Definite

# Sample.ques.Test4 - Antiderivatives 1 u 3 2u 7du 2 3 4 5...

• Test Prep
• 2

This preview shows page 1 - 2 out of 2 pages.

Antiderivatives: 1. + - du u u 7 2 3 2. + dx x x ) 1 ( 4 3. dw w w w - 4 5 2 3 4. + dt t t t ) cos (tan sec 5. + vdv v csc sin 1 2 Riemman Sums and the Definite Integral: 1. Approximate the area under the curve using right endpoints for y = f(x) if ] 6 , 1 [ int 3 ) ( erval the on x x f + = 2. And approximate the area under the curve y = g(x) on the interval x = 0 to x = 6, where g(x) = e -3x 3. Let’s consider when the function is . ] 4 , 0 [ int 3 3 ) ( 2 erval the over x x x f + + = Divide the interval into n-equal subintervals and use the Riemann Sum and r.h.e.p. to write the Area(as a function of n) skinny little rectangles. Now, find the limit as n ∞. 4. Use the first part of the fundamental theorem of calculus to evaluate
• • • 