Introductory Chemical Engineering Thermodynamics

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Solutions to Chemical and Engineering Thermodynamics, 3e 4 4.1 Using the Mollier diagram = (510 - 490) C F T I = F T I = H P K H P K c1.241 10 - 7.929 10 hPa H H 7 6 = 4.463 10 -6 C Pa = 4.463 C MPa S = S S 7 (510 - 490) C F T I F T I = H P K H P K c1.069 10 - 9.515 10 hPa 6 aH S f aH Sf 4.2 = 1.702 10- 5 C Pa = 17.02 C MPa T P a f a f a f a f a f a f a f a f a T , H f a P , S f = = = 0.262 ( unitless) a P , H f a T , S f = H, T S,P H, T S, P = S ,T H, P H, P S ,T S V (a) Start from eqn. 4.4-27 H ( T , P) - H IG (T , P ) = RT ( Z - 1) + RT a( T ) - 2 ; V - b V + 2bV - b 2 V = z LMN FH T dP dT I K - P dV V OP Q P= F P I H T K V = R da dt - 2 so V - b V + 2 bV - b 2 H ( T , P) - H IG (T , P ) V = RT ( Z - 1) + V = = RT ( Z - 1) + a + T F H z LMN RST T R da dt RT a( T ) - 2 - + 2 dV 2 V - b V + 2bV - b V - b V + 2bV - b 2 da dT I K V V = V z U V W OP Q dV 2 + 2bV - b2 From integral tables we have z dx a x2 + b x + c = 1 b 2 - 4 a c ln 2a x + b - b 2 - 4 a c 2a x + b + b 2 - 4 a c for 4ac - b 2 < 0 In our case a = 1, b = 2b , c = -b2 ; so 4 a c - b 2 = 4 1 -b 2 - ( 2b )2 = - 8b2 c h and (b)2 - 4a c = 8b2 = 2 2b . Solutions to Chemical and Engineering Thermodynamics, 3e H ( T , P) - H IG (T , P ) = RT ( Z - 1) + aa - Tda dTf LMln 2V + 2b - 2 2b 2 2b MN 2V + 2b + 2 2b aa - Tda dTf ln V + d1 - 2 ib = RT ( Z - 1) + 2 2b V + d1 + 2 ib or finally H ( T , P) - H IG (T , P ) = RT ( Z - 1) + - ln V 2V + 2b - 2 2b 2V + 2b + 2 2b V = OP PQ aTda dT - af lnLM Z + d1 + 2 iB OP 2 2b MN Z + d1 - 2 iB PQ (b) This part is similar except that we start from eqn. (4.4-28) S (T , P) - S IG ( T , P) = R ln Z + = R ln Z + V V = V V = d d da dT F Z + d1 + 2 i B I = R ln( Z - B) + lnG J 2 2 b H Z + d1 - 2 i B K z LMNFH z LMN dP dT I K - V R dv V OP Q R da dT R - - dV V - b V 2 + 2 bV - b 2 V OP Q V V -b da dT V + 1 + 2 b = R ln Z + R ln + ln V V = 2 2b V + 1 - 2 b i i V V = 4.7 (a) Ideal gas PV = NRT N = (50 bar ) 100 m 3 ( 27315 + 150) K 8.314 10-2 bar m3 kmol K . c h = 142.1 kmol Energy balance, closed nonflow system U = Q - PdV = Q + W . However, for ideal gas U = 0 since T is constant (isothermal). Thus W = - Q = - PdV = - z z z NRT V P dV = - NRT ln 2 = - NRT ln 1 V V1 P2 = -142 .1 kmol 8.314 J mol K (27315 + 150 ) ln . = 895.9 10 3 kJ = 895.9 MJ Q = -895.9 MJ Also, by Ideal Gas Law at fixed T and N F 50 I H 300 K Solutions to Chemical and Engineering Thermodynamics, 3e PV1 = PV2 V2 = V1 1 2 (b) Corresponding states Tr initial state final state P 50 1 = 100 m 3 = 16.67 m3 P2 300 Pr 50 = 0.679 7376 . 300 = 4.067 73.76 Z 0.94 0.765 150 + 27315 . = 1.391 304 .2 1.391 H IG - H TC 0.7 4.5 cal mol K S IG - S 0.4 2.4 cal mol K Number of moles of gas = N = Final volume = V f = = ZNRT Pf PV 142.1 PV = = 151.2 kmol ( 142 .1 = from above) ZRT 0.94 RT 0.765 151.2 8.314 10-2 (273.15 + 150 ) =1356 m3 . 300 Energy balance on gas: U = Q + W Entropy balance on gas processes in gas are reversible: S = S = Q or Q = T S T Q + S gen S gen = 0 . Therefore T S = S f - Si = N S f - S i = N S f - S f + S f - S i IG IG Q = T S = ( 27315 + 150 ) 151.2 kmol (- 2326) = -14885 MJ . . . W = U - Q = N U f - U i - Q = N H f - H i - N Pf V f - PV i - Q i = N TC P R U - ( -0.4 4.184 )V S P T W R-8.368 - 8.314 ln 300 U = -23.26N J K = NS V 50 W T = N -2.4 4.184 - 8.314 ln f i c h mc h c IG h - cS - S hr i IG i LM d H NM f -Hf TC IG i+ c H f IG -H IG i h -TC dH - H i - Z RT i IG i Since process is isothermal. 0 TC f f + Zi RTi - Q OP QP L304 .2(-4.5 - (-0.7)) 4.184 - 8.314 OP + 14885 MJ = 151.2 kmolM N (273.15 + 150) (0.765 - 0.94) Q . = 850.3 MJ = 151.2 103 -48365 + 615.7 J + 14885 MJ = - 638.2 + 14885 MJ . . . (c) Peng-Robinson E.O.S. Using the program PR1 with T = 27315 , P = 1 bar as the reference state, we obtain . T = 150 C , P = 50 bar Z = 0.9202 ; V = 06475 10-3 m3 mol ; H = 470248 J mol ; S = -17.57 J mol K . . . T = 150 C , P = 300 bar Solutions to Chemical and Engineering Thermodynamics, 3e Z = 0.7842 ; V = 0.9197 10-4 m3 mol ; H = -60.09 J mol ; S = -4124 J mol . . N= V 100 m 3 = = 154 .44 kmol V 0.6475 10 -3 m 3 mol Q = TN S = (273.15 + 150 ) 154 .44 (- 4124 - ( -17.57)) = -1546.9 MJ . W = U - Q = ( H - PV ) f - ( H - PV )i - Q = N ( H - PV ) f - ( H - PV )i - Q 5 3 = 885.25 MJ {Note that N, Q and W are close to values obtained from corresponding states.} 4.8 LM-60.09 - 300 0.9197 10 = 154.44 M10 J bar m - 4702.48 MNM+50 0.6475 10 10 -3 5 -4 OP PP 10 + 1546.9 10 QP 3 6 FG T IJ H PK and a f -a S Pf aV Tf V T = a S Tf = C T = C S T P P P P = (T , S ) (T , S ) ( P , T ) ( S , T ) ( P, T ) = =- ( P, S ) ( P , T ) P, S ( S , P ) ( T , P) 1 V V dP S = T 1 V V dP a fa a fa f f S T = (V , S ) ( P, S ) (V , S ) ( P, T ) = (V , T ) ( P, T ) (V , T ) ( P, S ) ( S ,V ) (T , P ) S = = (T , V ) ( S , P ) T FG IJ FG T IJ H K HS K V = P CV T C = V T CP CP 4.9 (a) FG H IJ = ( H, T) = (H ,T ) (P ,T ) = FG H IJ FG P IJ H V K (V ,T ) (P ,T ) (V , T) H P K H V K F P IJ 0 (except at the critical point) Since G H V K T T T T (b) FG H IJ = 0 H PK FG S IJ = (S, P ) = (S, P) (T , P) = FG S IJ FG T IJ H V K (V , P) (T, P ) (V , P) H T K H V K C 1 F dT I C TV C F S I = V G H dV JK = a1 V faV Tf = TV GH V JK T V = 0 if T T P P P P P P P P FG H IJ H V K ~ -1 P 4.10 (a) We start by using the method of Jacobians to reduce the derivatives Solutions to Chemical and Engineering Thermodynamics, 3e FG T IJ H V K = H (T , H ) (T , H ) (T , P ) T ,V = (V , H ) (T , P ) (T ,V ) (V , H ) ( H , T ) ( P, T ) (V , T ) H =- ( P, T ) ( H ,V ) (T ,V ) P a f =- =- a H V f ad H Tf FG V IJ H T K FG IJ a P V f H K a H T f T T V T V Now from Table 4.1 we have that FG H IJ H PK =V -T T and P FG H IJ H T K = CP + V - T V LM N FG V IJ H T K P OP FG P IJ QH T K V alternatively, since H = U + PV FG H IJ = FG U IJ + FG ( PV )IJ H T K H T K H T K V V = CV + V V F dP I H dT K T V Thus a f F P IJ FG V IJ = - FG P IJ Note: I have used G H V K H T K H T K H T P FG T IJ H V K = - P V T V - T V T CV + V P T V a f a f P = - V P V CV a f + Ta P Tf + V a P T f V V . V FG T IJ H V K = S = FG S IJ FG T IJ H V K H S K T (T , S ) ( T , S ) (V , T ) ( S , T ) (T ,V ) = =- (V , S ) (V , T ) (V , S ) (V , T ) ( S ,V ) =- V T P CV T FG IJ H K = V (b) For the van der Waals fluid FG P IJ H T K Thus = V R P , V -b V FG IJ H K T - RT 2a + (V - b )2 V 3 FG T IJ H V K = H 2 2 - - RTV (V - b ) + 2 a V + RT (V - b ) n CV + V R V - b s after simplification we obtain FG T IJ H V K = H - 2 a(V - b ) - RTV b 2 2 CC (V - b )2 V 2 + R(V - b )V 3 Solutions to Chemical and Engineering Thermodynamics, 3e and FG T IJ H V K =- S RT CV (V - b ) 4.11 There are a number of ways to solve this problem. The method I use is a little unusual, but the simplest that I know of. At the critical point all three roots of V are equal, and equal to V C . Mathematically this can be expressed as V - V C a f 3 = 0 which, on expansion, becomes (1) V 3 - 3V C V 2 + 3V 2 V - V 3 = 0 C C compare this with P= RT a RT a - = - 2 V - b V (V + b ) + b (V - b) V - b V + 2 bV - b 2 which multiplying through by the denominators can be written as V +V 3 2 F b - RT I + F -3b H PK H 2 2 - 2bRT a RTb 2 ab + V + b3 + - =0 P P P P I FG K H IJ K (2) Comparing the coefficients of V in Eqns. (1) and (2) gives TC , P C V : b- RTC = - 3V C P C (3) V : - 3b 2 - 2bRTC a 2 + = 3V C PC PC (4) V 0: b3 + From Eqn. (3) RTC 2 ab 3 b - = -V C PC PC (5) PCb -3 PCVC -1= = -3 ZC RTC RTC For convenience, let y = 1 - 3ZC or ZC = or PCb = 1 - 3ZC RTC (6) 1- y . Then 3 PCb =y RTC From Eqn. (4) Solutions to Chemical and Engineering Thermodynamics, 3e -3 FG P b IJ - 2FG P b IJ + aP H RT K H RT K aRT f C 2 C C C C C 2 2 = 3 ZC -3 y 2 + 2 y + or expanding and rearranging aRT f C aP C 2 = 3(1 - y)2 9 a RT f C aP C 2 = 1 10 y 2 + 4 y + 1 3 c h (7) Finally from eqn. (5) FG P b IJ + FG bP IJ - FG P b IJ FG aP IJ = - Z H RT K H RT K H RT K H aRT f K 1 1 (1 - y) y + y - y c10 y + 4 y + 1h = - 3 27 3 2 C C C C C C C C 2 3 2 2 3 C 3 or 64 y3 + 6y 2 + 12y - 1 = 0 This equation has the solution y = 0077796074 . b = 0.077796074 a = 0.457235529 RTC (from Eqn. (6)) PC C 2 (8) aRT f PC (from Eqn. (7)) 1- y = 0.307401309 . 3 Note that we have equated a and b to TC and P only at the critical point. Therefore these functions C Also ZC = could have other values away from the critical point. However, as we have equated functions of V , we have assumed a and b would only be functions of T. Therefore, to be completely general we could have aRT f FG T IJ HT K P RT F T I b = 0.077796074 G J HT K P T T FTI F TI with G J 1 as 1 and G J 1 as 1. HT K T HT K T a = 0.457235529 C 2 C C C C C C C C C In fact, Peng and Robinson (and others) have set = 1 at all temperatures and adjusted a s a function of temperature to give the correct vapor pressure (see chapter 5). 4.12 (also available as a Mathcad worksheet) Solutions to Chemical and Engineering Thermodynamics, 3e . N1 N2 . M.B. . E.B. Q dN & & & & = N1 + N2 = 0 N 2 = - N1 dt & dU Q & & & = N1 H 1 + N 2 H 2 + Q = 0 = H 2 - H1 dt N1 Also, now using the program PR1 with T = 27315 , P = 1 bar reference state we obtain . T = 100 C P = 30 bar Z = 0.9032 V = 09340 10-3 m3 mol . H = 3609.72 J mol S = -1584 J mol K . T = 150 C P = 20 bar Z = 0.9583 V = 01686 10-2 m3 mol . H = 679606 J mol . S = -4.68 J mol & Q . . & = 679606 - 3609.72 = 318634 J mol N 4.13 (also available as a Mathcad worksheet) Since process is adiabatic and reversible S = 0 or Si = S f , i.e., S (310 K, 14 bar ) = S (T = ?, 345 bar) . Using the program PR1 with the T = 27315 K and P = 1 . bar reference state we obtain T = 310 K , P = 14 bar , Z = 0.9733 , V = 01792 10-2 m3 mol , . H = 10908.3 J mol and S = 1575 J mol K . . By trial and error (knowing P and S , guessing T) we obtain T = 34191 K , P = 345 bar , . Z = 0.9717 , V = 08007 10-4 m3 mol , . Tf = 34191 K . . System = contents of compressor dN & & & & M.B.: = 0 = N1 + N 2 N 2 = - N1 dt H = 188609 J mol , . S = 1575 J mol K . volume of compressor constant 0 dU dV & & & = 0 = N1 H 1 + N 2 H 2 + Q& 0 +Ws - P E.B.: dt dt & W & & & WS = - N1 H1 + N 2 H 2 or &S = H 2 - H 1 = 188609 - 109083 = 7952.6 J mol . . N adiabatic 4.14 (a) FG P + a IJ (V - b) = RT PV = V - a H VK RT V - b RTV PV F V - a IJ = 1 i) lim = lim G RT H V - b RTV K PV RV a U I ii) B = lim V F H RT - 1K = lim V SV - b - RTV - 1V T W RV - (V - b) - a U = lim R bV - a U = b - a = lim V S T (V - b) RTV V S (V - b) RT V RT W T W 2 P 0 V V P 0 V V V V Solutions to Chemical and Engineering Thermodynamics, 3e iii) C = lim V 2 P 0 V FG PV - 1 - B IJ = lim V RbV - b(V - b) U = lim b V = b S V -b V V -b H RT V K T W 2 V V P 0 2 C = b2 (b) At the Boyle temperature: lim V F PV - 1I = 0 B = 0 H RT K a a 9V c RTc V 0 =b- , TB = but a = , b = c (Eqns. 4.6-3a) RTB Rb 8 3 TB = 9 8V c RTc 27 = Tc = 3.375Tc RVc 3 8 4.20 Mass balance (system = both tanks): N1i = N1f + N 2f i energy balance (system = both tanks): N1i U 1 = N1f U 1f + N2f U 2f entropy balance (system = portion of initial contents of tank 1, also in there finally): S i1 = S 1f Also, P1 f = P2 f = P f ; N1i = V1 i V1 ; N1f = = Pf 1 T1 f V1 f V1 and N2f = V2 V2 f (a) Ideal gas solution: obtain Pi 1 T1i + P2f T2 f from mass balance and Pi = P f + P2 f = 2 P f P f = 250 bar = 25 107 Pa from energy balance . 1 1 Solutions to Chemical and Engineering Thermodynamics, 3e T1 = f T1i = -23.9 C from entropy balance and 1 T2 Also N1f P f V RT i 2.5 10 7 293.15 = 1 f1 i 1 = = 0.588 i N1 RT1 P V1 249 .3 5.00 107 1 and N2f N1f = 1- i N1 N1i (b) Corresponding States Solution: Initial conditions Tr = 29315 . = 1538 ; . 190 .7 P = r 5 107 = 10.77 ; 4.64 106 Z = 1.22 ; f FG P IJ HPK f 1 i 1 R CP T1 f = (20 + 273.15) FH 1IK 2 8.314 35.565 = 249 .3 K = 2 T1i - 1 T1 f T2 f = 355.9 K = 82.7 C FG IJ = 0.412 H K H IG - H = 18.0 J mol K ; SIG - S = 96 J mol K . . TC Mass balance: Pi 1 1 1 = Pf + f f i i f f Z1 T1 Z1 T1 Z2 T2 Entropy balance: i IG S 1f - S 1 = 0 = S 1 - S 1 R S T U = 5.0 10 = 1.398 10 V 122 293.15 W . 7 IG, f 1 5 (1) d i + dS f - S IG, i - S 1 - S IG 1 1 i d i i or dS - S i 1 IG f 1 + CP ln T1 f Pf - R ln = -9 .6 29315 5.0 10 7 . (2) Energy balance: i i N1i U 1 = N1f U 1f + N2f U 2f but N1i = N1f + N 2f N1f U 1f - U 1 + N2f U 2f - U i2 = 0 d i d i or Solutions to Chemical and Engineering Thermodynamics, 3e V ndH - P V i - dH - P V is + ZP RT ndH - P V i - dH - P V is = 0 1 ndH - H i + dH - H i - dH - H i - Z RT + Z RT s Z T 1 + ndH - H i + d H - H i - d H - H i - Z RT + Z RT s = 0 Z T f 1 f 1 f 1 i 1 i 1 i 1 2 f 2 f f 2 f 2 f 2 i 1 i 1 i 1 2 f f 1 1 f 1 f , IG 1 f , IG 1 i , IG 1 i 1 i , IG 1 f 1 f 1 i 1 i 1 f f 2 2 f 2 f , IG 2 f , IG 2 i , IG 1 i 1 i , IG 1 f 2 f 2 i 1 i 1 P f V1 1 Z1f RT1 f f 2 Substituting in the known values gives . . ndH - H i + 35565cT - 29315h - 8.314 Z T + 6,406.5s 1 + . . ndH - H i + 35565cT - 29315h - 8.314 Z T + 6,406 .5s = 0 (3) Z T f 1 Z1f T1 f f 1 f , IG 1 1 f f 1 1 f f 2 2 f 2 f , IG 2 f 2 f f 2 2 Eqns. (1-3) now must be solved. One possible procedure is i) Guess P f ii) Use Eqn. (2) to find T f 1 iii) Use Eqn. (1) to find T2 f iv) Use Eqn. (3), together with T f and T2 f to see if guessed P f is correct. If not, go back to 1 step i. After many iterations, I found the following solution i i T2 f = 259.4 K ; N1f N1 = 0.645 ; N 2f N1 = 0.355 . P f = 9787 bar ; T1 f = 2216 K ; . . (c) Peng-Robinson equation of state Here we use the equations N1i = N1f + N 2f i N1i U 1 (4) (5) (6) = N1f U 1f + N2f U 2f S i1 =S f with U = H - PV P1 f = P2 f = P f i f and N1i = V1 V 1 ; N1f = V1 V 1f ; N2f = V2 V 2f = V1 V 2 since V1 = V2 (value of V1 cancels out of problem, so any convenient value may be used). Procedure I used to solve problem was as follows. From PR1 we know V i1 N1i and S i1 given initial conditions. Then c h 1. 2. 3. i Guess value of T , find P1 = P that satisfies S 1f = S 1 1 f f f Use T f , P f and V 1f to get N1f ; then N 2f = N1i - N1f so V 2f is known. 1 From P f and V 2f find (trial-and-error with PR1) T2 f 4. See if eqn. (5) energy balance is satisfied; if not go back to step 1. After a number of i iterations I find Pf =103.6 bar ; T1 f = 222.3 K ; T2 f = 2555 K ; N1f N1 = 0.619 ; . i N2f N1 = 0381 . . Solutions to Chemical and Engineering Thermodynamics, 3e Summary ideal gas (part a) 250 bar 249.3 K 355.9 K 0.588 0.412 Corresponding states (part b) 97.87 221.6 K 259.4 K 0.645 0.355 P-R E.O.S. (part c) 103.6 222.3 K 255.5 K 0.619 0.381 Pf T1 f T2 f i N1f N1 N2f i N1 Clearly, the ideal gas assumption is seriously in error! ...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online