MTH5131 Actuarial StatisticsCoursework 4 — SolutionsExercise 1.1. LetXbe the number of claims received in a week. To determine the posteriordistribution ofμ, we must calculate the conditional probabilitiesP(μ= 8|X= 7),P(μ=10|X= 7), andP(μ= 12|X= 7),. The first of these isP(μ= 8|X= 7) =P(μ= 8, X= 7)P(X= 7)=P(X= 7|μ= 8)P(μ= 8)P(X= 7)SinceX∼Poisson(μ),P(X= 7|μ= 8) =e-8877!and since the prior distribution is uniform on the integers 8, 10 and 12:P(μ= 8) =13.SoP(μ= 8|X= 7) =e-8877!×13P(X= 7)=0.04653P(X= 7)Similarly,P(μ= 10|X= 7) =P(X= 7|μ= 10)P(μ= 10)P(X= 7)=e-101077!×13P(X= 7)=0.03003P(X= 7)andP(μ= 12|X= 7) =P(X= 7|μ= 12)P(μ= 12)P(X= 7)=e-121277!×13P(X= 7)=0.01456P(X= 7)Since these conditional probabilities must sum to 1, the denominator must be the sum of thenumerators, soP(X= 7) = 0.04653 + 0.03003 + 0.01456 = 0.09112The posterior probabilities are:P(μ= 8|X= 7) =0.046530.09112= 0.51066P(μ= 10|X= 7) =0.030030.09112= 0.32954P(μ= 12|X= 7) =0.014560.09112= 0.159802. The Bayesian estimate under squared error loss is the mean of the posterior distribution:8×0.51066 + 10×0.32954 + 12×0.15980 = 9.298301