{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Spring 2007

# Spring 2007 - Scott Pratt PHY231 Spring 2007 Introduct...

This preview shows pages 1–3. Sign up to view the full content.

Scott Pratt - PHY231, Spring 2007 - Introduct 1 Midterm 3 (lecture students) Scott Pratt Do not open exam until instructed to do so.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Scott Pratt - PHY231, Spring 2007 - Introduct 3 Midterm 3 (lecture students) Quadratic Formula ax 2 + bx + c = 0, x = [ - b ± b 2 - 4 ac ] / (2 a ) Geometry Circle: circumference=2 πR , area= πR 2 Sphere: area=4 πR 2 , volume=4 πR 3 / 3 Trigonometry a A B b C sin α = A C , cos α = B C tan α = A B A B C α γ β sin α A = sin β B = sin γ C A 2 + B 2 - 2 AB cos γ = C 2 Polar Coordinates x = r cos θ, y = r sin θ , r = p x 2 + y 2 , tan θ = y/x SI Units and Constants quantity unit abbreviation Mass m kilograms kg Distance x meters m Time t seconds s Force F Newtons N=kg m/s 2 Energy E Joules J=N m Power P Watts W=J/s Temperature T C, K or F T F = 32 + (9 / 5) T C Pressure P Pascals Pa=N/m 2 1 cal=4.1868 J, 1 hp=745.7 W, 1 liter=10 - 3 m 3 g = 9 . 81 m/s 2 , G=6 . 67 × 10 - 11 Nm 2 /kg 2 1 atm=1 . 013 × 10 5 Pa, 0 C=273.15 K, N A = 6 . 023 × 10 23 R = 8 . 31 J/(mol K)=0.0821 L atm/(mol K), k B = R/N A = 1 . 38 × 10 - 23 J/K, σ = 5 . 67 × 10 - 8 W/(m 2 K 4 ) v sound = 331 p T/ 273 m/s H 2 0: c ice , liq ., steam = { 0 . 5 , 1 . 0 , 0 . 48 } cal/g C L F,V = { 79 . 7 , 540 } cal/g, ρ = 1000 kg/m 3 . 1-d motion, constant a x = (1 / 2)( v 0 + v f ) t v f = v 0 + at x = v 0 t + (1 / 2) at 2 x = v f t - (1 / 2) at 2 (1 / 2) v 2 f - (1 / 2) v 2 0 = a x Range : R = ( v 2 0 /g ) sin 2 θ Forces, Work, Energy, Power, Momentum & Impulse F = ma , Gravity: F = mg, PE = mgh Friction: f = μN , Spring: F = - kx, PE = (1 / 2) kx 2 W = Fx cos θ, KE = (1 / 2) mv 2 , P = ∆ E/ t = Fv p = mv, I = F t = ∆ p X cm = ( m 1 x 1 + m 2 x 2 + · · · ) / ( m 1 + m 2 + · · · ) Elastic coll.s: v 0 1 - v 0 2 = - ( v 1 - v 2 ) Rotational Motion θ = (1 / 2)( ω 0 + ω f ) t, ω f = ω 0 + αt θ = ω 0 t + (1 / 2) αt 2 = ω f t - (1 / 2) αt 2 α θ = (1 / 2) ω 2 f - (1 / 2) ω 2 0 ω = 2 π/T = 2 πf, f = 1 /T Rolling: a = αr, v = ωr a c = v 2 /r = ωv = ω 2 r τ = rF sin θ = Iα, I point = mR 2 I cyl . shell = MR 2 , I sphere = (2 / 5) MR 2 I solid cyl . = (1 / 2) MR 2 , I sph . shell = (2 / 3) MR 2 L = = mvr sin θ, ( θ = angle between v and r) KE = (1 / 2) 2 = L 2 / (2 I ) , W = τ θ Gravity and circular orbits PE = - G Mm r , PE = mgh (small h ) F = G Mm r 2 , GM 4 π 2 = R 3 T 2 Gases, liquids and solids P = F/A, PV = nRT, P = ρgh h (1 / 2) mv 2 i = (3 / 2) k B T ideal monotonic gas: U = (3 / 2) nRT = (3 / 2) PV F bouyant = ρ displaced liq . V displaced liq . g Stress = F/A, Strain = ∆ L/L, Y = Stress / Strain L L = F/A Y , V V = - P B , Y = 3 B Continuity: ρ 1 A 1 v 1 = ρ 2 A 2 v 2 Bernoulli: P a + 1 2 ρ a v 2 a + ρ a gh a = P b + 1 2 ρ b v 2 b + ρ b gh b Thermal L/L = α T, V/V = β T, β = 3 α Q = mC v T + mL (if phase trans . ) Conduction and Radiation P = kA ( T b - T a ) /L = A ( T b - T a ) /R , R L/k P = eσAT 4
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}