hw1 soln part2

# Introduction to the Theory of Computation

• Homework Help
• PresidentHackerCaribou10582
• 1

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Theory of Computation — CSE 105 Half-Language Solution for Problem 1.42 Idea: Sine Ä is regular, Let Å ´É ¦ Æ Õ¼ µ be a DFA recognizing Ä. The idea for recognizing ½ Ä is the following: We are given a string Ü and we need to check if there is a string Ý of equal length as Ü ¾ such that ÜÝ ¾ Ä. We want to make transitions (according to DFA Å ) on Ü while at the same time keeping track of all possible ‘backward’ steps we could take from one of accepting states of Å . Thus, if we run the ‘forward’ and the ‘backward’ transitions in synchrony, these transitions can meet at the same state if there is an equal length string Ý such that ÜÝ ¾ Ä. We use the cartesian product construction to carry out the ‘parallel’ simulation required to implement our strategy. Construction: We will now design a machine ½ Å ´É¼ ¦ Æ ¼ ×¼ ¼ µ where É¼ É ¢ É ×¼ , ×¼ is a ¾ new start state distinct from the states in É, and ¼ ´Ô Ôµ Ô ¾ É . Æ¼ is deﬁned as follows: We create transitions from the start state ×¼ to every pair of states such that the ﬁrst state is the start state Õ¼ of Å and the second state in the pair is an accepting state of Å . For every Ô ¾ , Æ ¼ ´×¼ ¯µ ´Õ¼ Ôµ For every pair of states ´´Ô Õ µ ´Ô¼ Õ ¼ µµ, and input symbol ¾ ¦, we create a transition from ´Ô Õ µ to ¼ Õ¼ µ on the symbol if the following condition holds: ´Ô ¼ ¾ ¦ such that Æ´Õ¼ ¼ µ Õ. Æ ´Ô µ Ô¼ and In other words, we create a transition between a pair of states on an input symbol if there is a forward transition between the corresponding ﬁrst states of the pair on the input symbol and there is a ‘backward’ transition between the second states on some input symbol. This completes the description of the machine ½ Å for recognizing ½ Ä. ¾ ¾ Justiﬁcation: We now want to argue that the NFA ½ Å does indeed recognize ½ Ä. ¾ ¾ ½ Consider any string Ü ¾ ½ Ä. Since Ü ¾ ¾ Ä, there exists a Ý of equal length as Ü such that ÜÝ ¾ Ä. Let ¾ ÜÝ Ù½ ¡ ¡ ¡ Ù Ù ·½ ¡ ¡ ¡ Ù¾ where Ù ¾ ¦. Let Õ¼ Õ½ Õ Õ ·½ Õ¾ be the sequence of states traversed by the machine Å when the input ÜÝ is presented. Õ¾ must be an accepting state of Å . Based on our construction of ½ Å , it is clear that ½ Å when presented with Ü can traverse thru the following sequence of ¾ ¾ states: ×¼ ´Õ¼ Õ¾ µ ´Õ½ Õ¾ ½ µ ´Õ ½ Õ ·½µ ´Õ Õ µ. Thus Ü will be accepted by ½ Å . ¾ In the other direction, consider any string Ü accepted by ½ Å . Let ×¼ ´Õ¼ Õ¾ µ ´Õ½ Õ¾ ½ µ ´Õ ½ Õ ·½ µ ´Õ Õ ¾ be an accepting sequence of states traversed by Ü in ½ Å . By our construction, Õ¾ must be an accepting ¾ state. Also input Ü will traverse thru the states Õ¼ Õ½ Õ in Å . Let Ý be the string that causes Å to traverse through the states Õ Õ ·½ Õ¾ . Such a sequence must exists by our construction and moreover the length of Ý is the same as that of Ü. Thus the sequence of states Õ¼ Õ½ Õ Õ ·½ Õ¾ is an accepting sequence of states for ÜÝ in Å . Thus ÜÝ ¾ Ä. µ 1 ...
View Full Document

• Summer '99
• Paturi
• U.S. state, Binary relation, Cartesian product

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern