math242 Wint03 midterm1 and2

math242 Wint03 midterm1 and2 - MATH 242 MIDTERM 1 W’03...

Info iconThis preview shows pages 1–12. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 8
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 10
Background image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 12
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: MATH 242 MIDTERM 1 W’03 Each problem is worth 10 points. Relax and good luck! NAME _- " PATIM v(_+) = (33% + (vi-r ‘37—‘5 \€ 1 { {3 MM) . ‘s \ V, “(1" H sat/<0 1. Show that the initial value problem ii— = 192‘”, y(0) = 0 does not have a unique ’} solution by exhibiting two distinct solutions. -3 7 ' a j _ f .. 3%W"L=© e ’ l X 1 ii ‘lz. ! ' _r dx XV 3X64 ><z\// eds/(0m- 3% W V1 1, mix, t J“)! . if i d -» 211W -— ' >31? >< :Cflgfi—i: 7‘ xi; . X W" /i_ a” i VCX) #C, 2 y in] z L fiC:O I: 20— 3(0) ZJ—fl-PC y 3 ii T. W. W 1* _ All ‘ d dx W 5 Fiat W”? “A 37 0‘7“ 3X X 1W :— ,X:+C A \/(O):O X 205) — Q; :C as Q=O c : we 2 y =(hx7—+tc)”e “0 V :(‘q W1 #3 1y? “i it, :L 3 0i)< Hex % t 9.011 2 x35 'Fuwdafluwflfii goMfib6V7l€+ ~ VWKWMWW What is lim y(x) , where y(x) is the solution to the initial value problem ya”): ~7yx4wlO><+C 52(0):} ‘4 I: yl'(o')-~‘7>//o)+10(05+C C5] '7 fix): YV'1*7\/%+'Ox+‘ 1‘ (y 2—' 7+ l 0‘5 Y iyx 10¥+) 3 X_# f “l f N 5Yzfihodypgdy MKVE¢VH03:Y*C C in [( y- S‘a( 36%)] C. :eer (y—syy~z>:C€X ('~ (M A X 3. Consider the Bernoulli equation d—y—Q = —x2y2 . (1) dx x (a) Show that the substitution v = y“I reduces equation (1) to the equation fl+2-‘i=x2. (2) dx x (b) Solve equation (2) for v. Then make the substitution v = y“ to obtain the solution to equation (1). d '2 l l—n -— —\ 0T)?“ xf'wz' Viv evty‘zevw OIV -2d :5 __ - ,_ 2-0;! — 3'..- —n 7— SUb dv 2 _ 'L dx >< “ y A “"‘ ‘" “‘1 (AV 6 7 dx X(v) ll Zth 7. 6570” :e "-x dx x d 1 __L (XZ‘Vi X —> J a éXS-i-C __) V: +- .X": Z X M N 3M _2 am _ __ Yr; 1 :- "-— f (1) {—Jdd3y—izjdyzo 37 8x y y M N r 3 W(x+3x3siny)dx+(x‘cosy)dy=o ~35! COS\/ 3X [1y CO )1 M M 1 3M x x Eli, .Y (iii) (1+exy+xe‘y)dx+(xe’+2)dy=0 79‘": 6 + X9 3% »- ‘Xe 4* £1 (Hexg +xex5‘3dxr (yeX r2)dtj :O M—FN 5. Suppose that a skydiver topples out of an airplane. The relevant initial value problem is = g ~(fljv , v(0) = O , where g is the gravitational constant and b is the m coefficient of air resistance. Assume that g =10 % . 1 (a) Suppose that 9— : ~5—. What is the terminal (limiting) velocity for the free-falling m skydiver ? (b) When does the skydiver reach 90% of the terminal velocity in part (a) ? . V(O\’O ) C5: '0‘ when VK—Hf—O fl : go «— Soe‘VSt _\ 41+ “50 ’— SOe“‘—s+ A l :9 75+ a m1:an 5 ON ' b CW is" = —) 9.7L! 4» 3v- : ‘ d7: -— ‘3 a? S \1 O on; i Marv-:65“ :_ C 5 +511! 4, Cit/g i 6144500 9 0H) ‘35—“ V > Us ' “S i“ — 8095+ {\l—JEOl (53 V) :6 (103 ’9 G \l— - a pqxso : a; 6 Mmam 1 SOLUTWJS‘ l. One “WM. .2 10030. IT 710 J we J‘flbwa‘rm 01C var-mug“: 41 = SW =7 11‘“: {N . 11 w“ )6 fl x ‘1Cfi\:0=3 (-10% 2x1 —-—~ :3 \1_._‘_Z Z. 7": 71-17440 :(‘1—2.)(‘1~I) [Aumwamoux] Fl'xfiJQ As'agram rkue )th W MATH 242 MIDTERM 2 W’03 Relax and good luck! NAME ’ MO” LP? ~53 Phi! m“ h D 7 " 10(1er g.) +(‘ 1. (40 points) The following differential equations model an idealized mass-spring system. For each equation, 2:3. ‘1 (i) Find the position of the mass at any time t. 7- 0‘ b ’3, (ii) Is the motion oscillatory? ‘7. 1 (iii) Is the motion periodic? Ifso, what is the period? 7- 1 (iv) Does the mass ever cross the mgfion? If so, when does it cross the equilibrium position for the‘firSt time? ’1. ' \ (v) Sketch the graph of the position function. 1 . I'L- (a) 3y”+48y ‘23-,y'(0)=2 (b) y'+5y'+4y=0,y(0)=1,y'(°)=1 a. 3r“ 148:0 em=3 , we, lung r: : +_ Lh- ‘ v E —— C- —‘r -—3 C\:'- 2- le+)=C1COSl++'+-C2Slnl‘i+ flkdfoyifci ‘ r: a CL: 1/2— ija : ’L'ICISK‘WLH' + H CLCOS ‘iJr—b 9 (0)“ tic?"— ®'9-E+S;"—LCOSH++—fllzfiolnq‘l—2 ® 565 ‘Hne mo‘h‘on is oscillatory C 4/1 t — _.,.._'_. "'— —- 'z‘ 4.: "-3 gaAsin(wt+¢) flame {a 'ilancb‘cz 'e | (b w fisinCHt-T—D .szrflZTl’_[_31:"-, PM“? " T Hall l4€9l+t5p€m6dfc ‘ n gag. (Jr (VESqu Hoe Graeiilibrium pOS‘ho ' ® [50‘310 I do“? {.3 d 1 ST ? einCHt‘E):O fiH*‘%:fi(S€*n“)q “.0 2. (16 points) Determine the form of a particular solution for the following [1. differential equations. 7; a (a) y’—8y’+25y=5x3e‘x—7e" ,2. :4 £2: 1 (b) y" +4y = 64" D (C) y'+y==x+sinx 0 (d) y'+2y'+2y=3e"‘+4cosx @ sz8r+ZS:O—’ rzl-ltai A 9(x)=e”"(cosa><+€m3><) A wx ' . I (3 We‘fiw‘“ —» gasp—qt)wwmxaexucmo) or” («0 iitgp=€“*(A»<3+Bx1+cX+D)] Lu. .7 ,7, ,..—__,,,_. ' Z (a r1+Hro a rli’Zu' rx (aha: Coslx‘rg‘r‘ X 9-2.x “>3 Jljpz Ae—ix‘} l ‘n 6) r1“ : O (a r: i‘ Lj(><): cosx +S\ X " S‘n‘x Y+an><~ak5plipxx+8 , tjpercoska \ so [/JF;AX+B+CCOS‘K*DS‘AK ‘ HEMP" XCAX*B*C¢OSX¥ ,,J - ,I_—>‘ 5y+§lfi><) z 2 2-04rsflti —> 3&ij (C0 cl ‘r + r* “I 3. (24 points) -- Find—the general solution to the differential equation -y"-—’4j74-4y=(x+1)ezx. ' r2““‘l|’+"f:0 ar:‘2_ v'firepeafi’d 1‘1 LjCK): Clezwk-i’szezx l. (40 points) ' The following difi‘erential equations model an idealized mass-spring system. For each equation, ‘ ‘ (i) Find the position of the mass at any time t. (ii) Is the motion oscillatmy? (iii) Is the motion periodic? If so, what is the period? (iv) Does the mass ever cross the equilibrium position? If so, when does it cross the equilibrium position for the first time? (v) Sketch the graph of the position funotion. (a) 3y"+4sy= o ,y(0)= «yz J10): 2 (b) y'+5y'+4y‘=0,y(o)=1,y'(0)=1 (a) (1) l1: ~31 mLH: +-\2-_hn'-H' (m ‘(Ls EEC) Yes; but T=L%‘=J$: 1;: 8") fLm-amwm few 4 m. “new; 7. {émkut-w/q) flu: Cir-069:; when t: +:tK-T i h: UIIJZ-i‘“ ’ SN‘M'A “TWA Win“? t "5 (pr/K. u”) a} ‘1: gei'zs‘W-‘w (it) No (Lu) Mr, M Sam; §¢¢v—’§e'“f:o J m it..." zigflnfiflo . so in mm mm With-«um» m 7 (0.41 ...
View Full Document

Page1 / 12

math242 Wint03 midterm1 and2 - MATH 242 MIDTERM 1 W’03...

This preview shows document pages 1 - 12. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online