This preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: .—~:.\__
( a,
_ . Math _142  Quizl if“ No calculators, Show all of your working. Name: ‘7 l' l 5 100+
5 1. Evaluate the indeﬁnite integral 1+4:1: ————————~—~—dm
v1+$+2m2 2. Evaluate the deﬁnite integral, if it exists: fan ‘1)25 dz: l‘l—l‘lx _ Ax V: \+>{+1xl
{i\+x+ml W = 3*le (M ,
r‘J W W : _..,.___.. .....
(I 25 \J'V" X=U w“:
\ L'X‘l) 5"? cl. " (”Wu x": l xvii"; I Math 142 — Quiz2 I No calculators, Show all of your working. Name: .' l 77 7' 743” \S‘Eetch the region enclosed by the given curves. QECide whether to integrate with respect
to a: or y. Biaw a typical approximating rectangle and label its height and Width. Then ﬁnd
the area of the region. I 1.'2:=1'—~y2,1::y2——1. RESPEH'TD x; Page 2 @ Math 142 — Quiz3 No calculators, show all of your working. Name: 1.4:... L EH, ) ’lOD . 1. Find the volume of the solid obtained by rotating the region bounded by the curves
y = 33 and y 2 J55 about the line y z 1. Sketch the region, the solid and a. typical disk
or washer. 2. Use the method of cylindrical shells to ﬁnd the irolume of the solid obtained by rotating
the region bounded by the curves 3; 2 $3, :4 : 8 and a: = 0 about the zit—axis. Sketch the region and a. typical shell. .’1 , L
9: :1.~1.'}l.¢)ﬂf»
l V V SS 21W: ‘K.’
(““5
K
\2/
Cl“
y: g {E} Hf?“ ‘5
mi»:
__,_\__.e.— 4.
1"}. m2 ' 2
W 9‘
q\ Wei.
(3”) :1 k1 Le “ («77$
_"~_ » {BAHI?
“r b " ° "'
f 6 ;~ (16m Lima
ejﬁé’xi "' '3'; 3 3 572‘ 1 % ii»
”I. f '2 1T 5 ﬂ 0 “ " I L ‘ 1‘ /_, »"""'“""‘"" ":3; 7"
, a." "Nit—'
Tﬁ Name“ 3% 'W%
U h
. :2 G! n "‘
ll” NVIW' ‘6 t W
__ ‘ . in get;
”H‘i '"‘"‘
" F)
q.” “Hui:
avg" Page 2 Math 142  Quiz4 @ No calculators, show all of your working. Name: ‘ lL N 2004 1. A cable that weighs 2 lb /ft is used to lift 8001b of coal up a mineshaft 500 ft deep. Find
the work done. W" l: Cl Cl : SODH . b l‘ “N; a . '1, goo 14*: ‘7."
V ' moon: / H;
l \ﬂ/I’i‘l’ a“
u l‘ M
:30“ I
‘ E g. 7 F: m '
. . we;
3 . .37. 90“” {woo @130 c ‘ W
air "L. I"\"‘ 7C0!“
9)!)
j 90014:: + 2x. cm 31cm:
D 3°“
A “£990 0
1 Sb” 0‘) L) U U
{EON +%]a “$00000
@090 V WW
W' $130 4' 500’}
490,420!) + 25099" 3w ' gnu ”WWW—n o a: O a:
937))003 “(aw/H {IX}. ‘2", (.19 a
_.  ‘w '43) ﬂ ('3' 333))“ 00 9......” .. 2. In a certain city, the temperature (in °F) t hours after 93m was modeled by the function 1ft
Tt  50 14 ———
(t ) + sin 12 Find the average temperature during the period from 9am to 9pm. 1 b . 5’ 3 ll
‘ “fLXDGIx.
‘0'“ a
I ‘1 / IL U2 :12
J + ( .. ,
/ 93+ “Hm”— "H ‘ ~" IE1) “r” Wrang er '
110 05 \2. a . dﬁﬁaﬁﬁ ibit/ + H Log if] WCMMm ‘3‘: 1’ —' WINNC 
01" “W 0 ”115“ Mﬁz _ : [gon. + M
GA? '; J. _ _ ‘13]: “J3
L1;— 2 [w W] '2,
if)“: 3 EM 2‘90?! ?
TM,
_ 7‘ l  —
K 61% MW , ‘50 i
‘1 m M \“J Page 2 Math 142 — QuizS I No calculators, Show all of your working. Name: _ _ '2‘ 700 1. Find the formula for the inverse of the function f($) : v10 — 31' 2. Suppose g is the inverse function of f and f (4) = 5,f’(4) = §. Find g'(5). I143"? ISLQ):4 ,
f‘T‘W’a 3H5): m 3>_
2 Page 2 @
Math 142  QuizS
No calculators, Show all of your working. Name: __._._'_\A  1 Mb 1. Find the derivative of y = cos—1(ezz). Simplify if possible. l5: CM" LELXB
 l 1 Cl «1‘ ‘ ~
my on 2 «— . gr“ 2. Evaluate the integral :j 2% 0M}
WNW“) ll Page 2 ch) W \‘rU H (a
Math 142  Quizﬁ No calculators, Show all of your working.
Name: ww—ﬁ—“—_ 1. Evaluate the integral [0035(33) sin4(m)d2: 2. Evaluate the integral U: 90315343
f moswmdm {A 53,47: n By. on;
\w* jww O\ 25g mg.
X a as}
J ‘ 1,
531MB) J ‘15‘51an m
\r: x
U : CK dd: 6““
X _. ﬂ ' :1. LBW.
Eimbx‘ ejkxnbx cbé dwgd“ CW (OS 30W.
. qr.) gm E3“;
S
ﬂ I _..__._.—_..« WW
_+——~»~—'
‘__.__..— Page 2 Math 142  QuizS No calculators, show all of your working. 4 Name: 1. Evaluate the integral using the indicated trigonometric substitution. Sketch and label
the associated right—triangle. 1
————~———d$ 1::33eczz:
21/ 2_9 ’
m 33 x1: amtx
ox: . \
: ”‘T'FL‘ ah: , ‘ ”“1 I
‘12?“ mﬁiﬁtx'q amtx (rem—i) ' ”tilt‘x "MM 1L l\ l
_ sj EEK/2’3; ctx m!
' " Waist u: 2}“?!
do: gtcx mﬁx 0‘ x 2. Evaluate the integral x ‘J" xzﬂr
r” 91* (Aw «m dx “Mr
, X M L i r mﬁ—J
’ “7:" .—' — :‘ '"‘ 3 UJfbF 1'
j w w! ’Zj W ”N am] \X/llc’
‘11 x}— Page 2 Math 142 — Quile No calculators, show all of your working. Name: _" , ' Maj H3004  _ 1. Write out the form of the partial fraction decomposition of the function. Do not deter—
mine the numerical values of the coefﬁcients. (a)
m H} w— 1‘)
xiix} w .2
LYHBUHU
Nicki l
(b) 2:4 )ll‘l ﬁ YE: + ”54—1 .LKﬁDsz'lBZO(ZB LEI—:1) _ “if? AVE 4% ’( Q:
_ r .. j r .....
LXL+'3{~<‘1)(>&\) x?“ X“ X~H
X\‘
xq/
t4+t2+1 ’ pm» f“ o 4;"
2 2 2 : TEL—D « 3"
(t +1)(t +4) 1
El ﬂag {ffN)" 2. Evaluate the integral 1
————dm
f m/ 4:1: + 1
(Hint: make an inverse substitution to make this into something for which you can use
partial fractions.) 1 U: LZIQM ul=uox1 m ‘1 EH : MU'D kPJLu’rD
V" 1 0—723 B~f U9"? ﬁst113* Pr?"
1 .
’— C‘LC'L .u"" r‘
Ur} wt
'l
\xmem‘w 5*”
, 3‘] '
.t 4' b
Ham11 Wm H" ‘l We Math 142 — Quizll @ No calculators, Show all of your working.
Name: _._.._.._,__H. M 7 Cl '2 339‘ 1. Determine wether the integral is convergent or divergent. Evaluate it if it is convergent. 1
1
[002—de um “I. _ _I_ _
W" ’3 f2.——~U\j {w — O
@0meth 2. The integral [:0de is improper for two reasons: The interval [0,00) is inﬁnite and the integrand has an inﬁnite discontinuity at 0. Evaluate it by expressing it as the sum of two improper
integrals as follows: immdmfﬁi‘amfﬁdmde (Hint: you might want to use an inverse substitution to evaluate the integral... and you
should have an inverse trig function when you integrate.) a";  ’1.
\ \ a} ‘X X4}
(‘1, ‘l
)Wﬂd‘ﬂ+{_ﬂ\»—w ._ {Mix‘ld’f
O WU“) \jfl’ilﬁu Y {114;
I
. .,\_ .
\ 1w" 1 251cm Page 2 ...
View
Full Document
 Spring '06
 staff
 Math

Click to edit the document details