lecture_13 - Three-way Contingency Tables Lecture 13 ILRST...

Info icon This preview shows pages 1–6. Sign up to view the full content.

View Full Document Right Arrow Icon
       Three-way Contingency Tables Lecture 13 ILRST 212
Image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
       Cochran-Mantel Haenszel  This section shows whether sample data are consistent with  homogenous associations or conditional independence. Cochran Mantel Haenszel method present a test of  conditional independence and test of homogenous  association for the K conditional odds ratios in 2*2*K tables. Example: table 3.3, page 60
Image of page 2
        Cochran-Mantel Haenszel For a 2*2*K tables, the null hypothesis that X and Y are  conditionally independent, given Z, means that the  conditional odds ratio  θ xy(k)  between X and Y equals 1 in  each partial table. Ho:  θ xy(1) =  θ xy(2) =  θ xy(3) = ………………………………… θ xy(k)=   1        Ha: Atleast one of the odds ratio is not equal to 1
Image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
        Cochran-Mantel Haenszel The test statistic utilizes n 11k  in each partial table. When the true odds ratio  θ xy(k)  exceeds 1.0 in partial table k,  we expect to observe (n 11k  -    11k ) >0.  The test statistic combines these differences across all K  tables.            μ
Image of page 4
       Cochran-Mantel Haenszel Hence CMH statistic takes larger values when (n 11k  -     11k )   is consistently positive or consistently negative for all tables,  rather than positive for some or negative for others.
Image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 6
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern