MATH 141E Fall 2005 - MATH 141 EXAMINATION I FORM A OCTOBER 3 2005 1 Find f − 1 ′(7 for f x = p x 3 x 2 x 46 a 5 3 b 7 3 c 4 3 d 8 3 e 1 7 2

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: MATH 141 EXAMINATION I, FORM A OCTOBER 3, 2005 1. Find ( f − 1 ) ′ (7) for f ( x ) = p x 3 + x 2 + x + 46 . a) 5 3 b) 7 3 c) 4 3 d) 8 3 e) 1 7 2. Differentiate y = e x + e − x e x- e − x . a) y ′ =- 4 ( e x- e − x ) 2 b) y ′ = 4 ( e x + e − x ) 2 c) y ′ =- 2 e 2 x + e − 2 x ( e x- e − x ) 2 d) y ′ =- 2 e 2 x + e − 2 x e) y ′ = e x- e − x e x + e − x 3. Evaluate the integral Z e x cos( e x ) dx . a)- cos( e x ) + C b) sin( e x ) + C c) e x sin( e x ) + C d)- cos( e x ) + x + C e)- e x sin( e x ) + C 4. Use the properties of logarithms to expand ln q a ( b 6 + c 2 ). a) ln( a ) 2 + ln( b 6 + c 2 ) 2 b) ln( a ) 2 + ln(6 b + 2 c ) 2 c) 2 ln( a )- 2 ln( b 6 + c 2 ) d) 2 ln( a ) + 2 ln( b 6 + c 2 ) e) ln( ab 6 ) + ln( ac 2 ) 5. Solve ln( e x- 7) = 6 for x . a) ln(6) + 7 b) e 6 + 7 c) ln( e 6 + 7) d) 13 e) 0 6. Differentiate G ( u ) = ln r 4 u + 3 4 u- 3 . a) G ′ ( u ) =- 7 (4 u + 3)(4 u- 3) b) G ′ ( u ) =- 12 (4 u + 3)(4 u- 3) c) G ′ ( u ) =- 4 u- 3 4 u + 3...
View Full Document

This note was uploaded on 04/12/2008 for the course MATH 141E taught by Professor Spaeth during the Spring '08 term at Pennsylvania State University, University Park.

Page1 / 3

MATH 141E Fall 2005 - MATH 141 EXAMINATION I FORM A OCTOBER 3 2005 1 Find f − 1 ′(7 for f x = p x 3 x 2 x 46 a 5 3 b 7 3 c 4 3 d 8 3 e 1 7 2

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online