# CMMPS2 - Using Successive Approximations to Solve for...

This preview shows pages 1–4. Sign up to view the full content.

Using Successive Approximations to Solve for Height of an Parameter Value Units S 0 n 0.02 b 10 m Q 5 m^3/s Iteneration hguess hcalc hcalc-hguess Residual % 1 200.0000 2.1262 -197.8738 195.7924 2 2.1262 0.5547 -1.5715 117.2387 3 0.5547 0.5021 -0.0526 9.9572 4 0.5021 0.5002 -0.0019 0.3807 5 0.5002 0.5001 -0.0001 0.0139 6 0.5001 0.5001 0.0000 0.0005 7 0.5001 0.5001 0.0000 0.0000 8 0.5001 0.5001 0.0000 0.0000 9 0.5001 0.5001 0.0000 0.0000 10 0.5001 0.5001 0.0000 0.0000 11 0.5001 0.5001 0.0000 0.0000 12 0.5001 0.5001 0.0000 0.0000

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
n Open Rectangular Channel
Using Newton Raphson to Approximate Wave Length a) Input Intermediate Results parameter value units Parameter Value H 1 m omega 0.6283 T 10 s kguess 2 h 10 m g 9.81 m/s^2 tol 0 Iteration Interation k(n) R dR/dk k(n+1) diff (%) 0 2 19.2252 9.810 0.04 1.9211 1 0.04024 -0.2440 7.119 0.07 0.5972 2 0.07451 0.0673 10.590 0.07 0.0891 3 0.06815 0.0013 10.151 0.07 0.0020 4 0.06802 0.0000 10.141 0.07 0.0000 Final Solution parameter value units L 92.3738 m b)

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 8

CMMPS2 - Using Successive Approximations to Solve for...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online