CMMPS2 - Using Successive Approximations to Solve for...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon
Using Successive Approximations to Solve for Height of an Parameter Value Units S 0 n 0.02 b 10 m Q 5 m^3/s Iteneration hguess hcalc hcalc-hguess Residual % 1 200.0000 2.1262 -197.8738 195.7924 2 2.1262 0.5547 -1.5715 117.2387 3 0.5547 0.5021 -0.0526 9.9572 4 0.5021 0.5002 -0.0019 0.3807 5 0.5002 0.5001 -0.0001 0.0139 6 0.5001 0.5001 0.0000 0.0005 7 0.5001 0.5001 0.0000 0.0000 8 0.5001 0.5001 0.0000 0.0000 9 0.5001 0.5001 0.0000 0.0000 10 0.5001 0.5001 0.0000 0.0000 11 0.5001 0.5001 0.0000 0.0000 12 0.5001 0.5001 0.0000 0.0000
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
n Open Rectangular Channel
Background image of page 2
Using Newton Raphson to Approximate Wave Length a) Input Intermediate Results parameter value units Parameter Value H 1 m omega 0.6283 T 10 s kguess 2 h 10 m g 9.81 m/s^2 tol 0 Iteration Interation k(n) R dR/dk k(n+1) diff (%) 0 2 19.2252 9.810 0.04 1.9211 1 0.04024 -0.2440 7.119 0.07 0.5972 2 0.07451 0.0673 10.590 0.07 0.0891 3 0.06815 0.0013 10.151 0.07 0.0020 4 0.06802 0.0000 10.141 0.07 0.0000 Final Solution parameter value units L 92.3738 m b)
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 4
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 8

CMMPS2 - Using Successive Approximations to Solve for...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online