{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

17.5 Ex 8-9

# 17.5 Ex 8-9 - 1148 C H A P T E R 17 L I N E A N D S U R FA...

This preview shows pages 1–2. Sign up to view the full content.

1148 C H A P T E R 17 LINE AND SURFACE INTEGRALS (ET CHAPTER 16) 8. F = x , y , z , part of sphere x 2 + y 2 + z 2 = 1, where 1 2 z 3 2 , inward-pointing normal SOLUTION z x y We parametrize S by the following parametrization: ( θ , φ ) = ( cos θ sin φ , sin θ sin φ , cos φ ) D : 0 θ 2 π , φ 0 φ φ 1 f 0 1 3 2 The angles φ 0 and φ 1 are determined by: cos φ 0 = 3 2 φ 0 = π 6 cos φ 1 = 1 2 φ 1 = π 3 f 1 1 1 2 Step 1. Determine the normal vector. The normal vector pointing to the outside of the sphere is: n = T φ × T θ = sin φ cos θ sin φ , sin θ sin φ , cos φ (Notice that for π 6 φ π 3 , sin φ cos φ > 0, therefore the z -component is positive and the normal points to the outside of the sphere). Step 2. Evaluate the dot product F · n . We express F in terms of the parameters: F ( ( θ , φ ) ) = x , y , z = ( cos θ sin φ , sin θ sin φ , cos φ ) Hence: F ( ( θ , φ ) ) · n ( θ , φ ) = cos θ sin φ , sin θ sin φ , cos φ · sin φ cos θ sin φ , sin θ sin φ , cos φ = sin φ cos 2 φ sin 2 φ + sin 2 θ sin 2 φ + cos 2 φ = sin φ · 1 = sin

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}