16.3.Ex37

16.3.Ex37 - 930 C H A P T E R 16 M U LTI P L E I N T E G R...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
930 CHAPTER 16 MULTIPLE INTEGRATION (ET CHAPTER 15) The centroid of the tetrahedron is thus P = ( 1 . 5 , 1 , 2 ) . 36. Find the centroid of the region described in Exercise 30. SOLUTION The region W is bounded by the cylinders z = 1 y 2 and y = x 2 , and the plane y = 0and y = 1. In Exercise 30 we showed that V = Volume ( W ) = 16 21 and W can be described by the following inequalities: 1 x 1 , x 2 y 1 , 0 z 1 y 2 We use iterated integrals to compute the coordinates x , y ,and z of the centroid. We get x = 1 V ZZZ W xdV = 21 16 Z 1 1 Z 1 x 2 Z 1 y 2 0 xdzdydx = 21 16 Z 1 1 Z 1 x 2 xz ¯ ¯ ¯ ¯ 1 y 2 z = 0 dydx = 21 16 Z 1 1 Z 1 x 2 x ³ 1 y 2 ´ = 21 16 Z 1 1 x à y y 3 3 ± ¯ ¯ ¯ ¯ 1 y = x 2 dx = 21 16 Z 1 1 x à 1 1 3 à x 2 x 6 3 ±± = 21 16 Z 1 1 à x 7 3 x 3 + 2 x 3 ± = 0 y = 1 V W ydV = 21 16 Z 1 1 Z 1 x 2 Z 1 y 2 0 ydzdydx = 21 16 Z 1 1 Z 1 x 2 yz ¯ ¯ ¯ ¯ 1 y 2 z = 0 = 21 16 Z 1 1 Z 1 x 2 y ³ 1 y 2 ´ = 21 16 Z 1 1 Z 1 x 2 ³ y y 3 ´ = 21 16 Z 1 1 à y 2 2 y 4 4 ± ¯ ¯ ¯ ¯ 1 y = x 2 = 21 16 Z 1 1 à 1 2 1 4 à x 4 2 x 8 4 ±± = 21 8 Z 1 0 à x 8 4 x 4 2 + 1 4 ± = 21 8 à x 9 36 x 5 10 + x 4 ± ¯ ¯ ¯ ¯ 1 0 = 21 8 µ 1 36 1 10 + 1 4 ² = 7 15 z = 1 V W zdV = 21 16 Z 1 1 Z 1 x 2 Z 1 y 2 0 zdzdydx = 21 16 Z 1 1 Z 1 x 2 z 2 2 ¯ ¯ ¯ ¯ 1 y 2 z = 0 = 21 16 Z 1 1 Z 1 x 2 ³ 1
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 2
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 3

16.3.Ex37 - 930 C H A P T E R 16 M U LTI P L E I N T E G R...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online