16.5 Ex 39

16.5 Ex 39 - S E C T I O N 16.5 Change of Variables (ET...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
SECTION 16.5 Change of Variables (ET Section 15.5) 1013 Let 8 1 ( u ,v) = ( Au + C v, Bu + D v) .Weaskthat 8 1 ( 0 , 1 ) = ( 1 , 1 ), 8 1 ( 1 , 0 ) = ( 1 , 1 ) That is, 8 1 ( 0 , 1 ) = ( C , D ) = ( 1 , 1 ) C = 1 , D = 1 8 1 ( 1 , 0 ) = ( A , B ) = ( 1 , 1 ) A = 1 , B =− 1 Therefore, 8 1 ( u = ( u + u + . The translate 8 that maps D 0 onto R is thus (see Exercise 26) 8 1 ( u = ( 1 + u + u + We use the change of variables x 1 + u + v , y u + v to compute the integral ZZ R ( x + y ) 2 e x 2 y 2 dx dy .The function expressed in the new variables u and v is f ( u = (( 1 + u + + ( u + v)) 2 e ( 1 + u + 2 ( u + 2 = ( 2 v 1 ) 2 e ( 2 v 1 )( 2 u 1 ) We compute the Jacobian of 8 : Jac (8) = ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ x u x ∂v y u y ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ = ¯ ¯ ¯ ¯ 11 ¯ ¯ ¯ ¯ = 1 + 1 = 2 Using the Change of Variables Formula gives I = R ( x + y ) 2 e x 2 y 2 = D 0 ( 2 v 1 ) 2 e ( 2 v 1 )( 2 u 1 ) · 2 dud v = Z 1 0 Z 1 0 2 ( 2 v 1 ) 2 e ( 2 v 1 )( 2 u 1 ) v = Z 1 0 2 ( 2 v 1 ) 2 ± Z 1 1 e ( 2 v 1 ) t · 1 2 dt ! d v = Z 1 0 ( 2 v 1 ) 2 2 v 1 e ( 2 v 1 ) t ¯ ¯ ¯ ¯ 1 t =− 1 d v = Z 1 0 ( 2 v 1 ) e 2 v 1 d v Z 1 0 ( 2 v
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 2
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 2

16.5 Ex 39 - S E C T I O N 16.5 Change of Variables (ET...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online