M408D SPRING 2015 HOMEWORK #4 - cheatham (sc36975) HW04 um...

This preview shows page 1 - 3 out of 7 pages.

cheatham (sc36975) – HW04 – um – (53890)1Thisprint-outshouldhave14questions.Multiple-choice questions may continue onthe next column or page – find all choicesbefore answering.00110.0 pointsFind all values ofrfor which the functiony=ertsatisfies the differential equationy′′2y8y= 0.
cheatham (sc36975) – HW04 – um – (53890)23.y= 2e5(x29)4.y= 2e5(x3)25.y=e5(x29)+ 1Explanation:This equation contains only one unknownconstant, so we will substitute the indicatedvalues ofxandyinto the equation to solveforCas follows:y(3) =Ce5(3)2=Ce45.This shows thaty(3) = 2 if and only ifC= 2e45. Thus,y(x) = 2e5x2e45.Hence,y(x) = 2e5(x29).00410.0 pointsThe family of solutions to the differentialequationy=3y2isy=13x+C.Find the solution that satisfies the initialconditiony(2) =5.1.y(x) =53(x+ 2)12.y(x) =515(x+ 2)1correct3.y(x) =13(x+ 2)54.y(x) =253(x+ 2)55.y(x) =115(x+ 2)5Explanation:This equation contains only one unknownconstant, so we will substitute the indicatedvalues ofxandyinto the equation to solveforCas follows:y(2) =13(2) +C=1C6.This shows thaty(2) =5 if and only ifC=15+ 6. Thusy(x) =13x15+ 6=13(x+ 2)15.Hence,y(x) =515(x

Upload your study docs or become a

Course Hero member to access this document

Upload your study docs or become a

Course Hero member to access this document

End of preview. Want to read all 7 pages?

Upload your study docs or become a

Course Hero member to access this document

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture