cheatham (sc36975) – HW02 – um – (53890)2which as the graph shows can in turn be writ-ten asI=π02 sin3(x)dx−3π/2π2 sin3(x)dx .Sincesin2(x) = 1−cos2(x),we thus see thatI=π0−3π/2π2 sin(x)(1−cos2(x))dx .To evaluate these integrals, setu= cos(x).For thendu=−sin(x)dx ,in which caseπ02 sin(x)(1−cos2(x))dx=−2−11(1−u2)du= 21−1(1−u2)du= 2u−13u31−1=83,while3π/2π2 sin(x)(1−cos2(x))dx=−20−1(1−u2)du=−2u−13u30−1=−43.Consequently, the shaded region hasarea = 4.keywords:00310.0 pointsEvaluate the definite integralI=π/404 cosx−2 sinxcos3xdx .1.I=522.I= 23.I=724.I= 45.I= 3correctExplanation:After division4 cosx−2 sinxcos3x= 4 sec2x−2 tanxsec2x= (4−2 tanx) sec2x .ThusI=π/40(4−2 tanx) sec2x dx .Letu= tanx; thendu= sec2x dxsoI=10(4−2u)du=4u−u210.Consequently,I= 3.00410.0 pointsEvaluate the integralI= 22π/301 + cos(θ)dθ.Hint:use a double angle formula to express1 + cos(θ)in terms ofcos2(θ/2).1.I= 2√2