ece431notesCh1_2007_09_04

ece431notesCh1_2007_09_04 - CHAPTER1 DoesSampling Always...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: CHAPTER1 DoesSampling Always LoseInformation? 1.1.Introduction Givenacontinuous-timewaveform x ( t ) ,supposeweextractsamples x ( t n ) atdistinct pointsintime t n .Isitpossibletoreconstruct x ( t ) forall t usingonlythedistinctvalues x ( t n ) ?Yourinitialreactionisprobably,Noway!However,ifweassumethat x ( t ) belongs toarestrictedclassofwaveforms,yourinitialanswermaychange. Example 1.1. Ifweknowthat x ( t ) isastraightline,then x ( t )= x ( t 1 )+ t- t 1 t 2- t 1 bracketleftbig x ( t 2 )- x ( t 1 ) bracketrightbig . Forthisclassofwaveforms,justtwosamples,takenatdistincttimes,allowreconstruction ofthecompletewaveformforalltime. Theforegoingexampleeasilygeneralizestotheclassofpolynomialsofdegreeatmost n .Inthiscase,just n + 1samples,takenatdistincttimes,determinethepolynomial. Asweshallsee,anywaveform x ( t ) intheclassofwaveformsbandlimitedto f c can bereconstructedfromitssamples { x ( n / f s ) } n =- if f s > 2 f c .Here f c iscalledthe cutoff frequency , f s iscalledthe samplingfrequency ,and2 f c iscalledthe Nyquistrate .The statementthatabandlimitedwaveformcanberecoveredfromitssamplesifthesampling frequencyisgreaterthantheNyquistrateiscalledthe SamplingTheorem . Nowconsideralineartime-invariantsystemwithimpulseresponse h ( t ) .Theresponse ofthissystemtoaninput x ( t ) isgivenbytheconvolutionintegral y ( t )= integraldisplay - h ( t- ) x ( ) d . Iftheimpulseresponseisbandlimitedto f c ,thentheoutput y ( t ) isalsobandlimitedto f c . Hence, y ( t ) canberecoveredfromitssamples y ( n / f s ) if f s > 2 f c .Infact,wewillshowthat iftheinputisbandlimitedtoo,thentherequiredsamplescanbeobtainedfromthe discrete convolution, y ( n / f s )= m =- h ([ n- m ] / f s ) x ( m / f s ) . Looselyspeaking,thisexplainshowcomputersandcompactdisc(CD)playershandle audioinformation.Sincehumanscanonlyhearsoundsuptoabout f c = 20kHz,itsuffices tosamplemusicandspeechatabout f s = 2 f c = 40kHz.Asapracticalmatter,toallowfor non-idealelectronics,CDscontainsamplestakenat f s = 44 . 1kHz. 1 2 1DoesSampling Always LoseInformation? 1.2.ReviewofFourierAnalysis InSection1.2.1,werecallFourierseriesforcontinuous-time,periodicsignals.InSec- tion1.2.2,werecallthediscrete-timeFouriertransformfordiscrete-time,aperiodicsignals. Thedualitybetweenthesetwosituationsisthenreadilyapparent. InSection1.2.3,wemotivatethecontinuous-timeFouriertransformbyexaminingthe limitingformoftheFourier-seriesrepresentationoftruncationsofthetimesignal. 1.2.1.Continuous-TimePeriodicSignals Suppose x ( t ) isaperiodicsignalwithperiod T and Fourierseries expansion x ( t )= n =- x n e j 2 nt / T . (1.1) Thenitiseasytoshowthatthe Fouriercoefficients aregivenby x n = 1 T integraldisplay T / 2- T / 2 x ( t ) e- j 2 nt / T dt . Thiscanbedemonstratedbyconsideringtheintegral integraldisplay T / 2- T / 2 x ( t ) e- j 2 mt / T dt = integraldisplay T / 2- T / 2 bracketleftbigg n =- x n e j 2 nt / T bracketrightbigg e- j 2 mt / T dt =...
View Full Document

Page1 / 6

ece431notesCh1_2007_09_04 - CHAPTER1 DoesSampling Always...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online