Chapter 6

Chapter 6 - 6 Numerical Solutions of Ordinary Differential...

Info iconThis preview shows pages 1–5. Sign up to view the full content.

View Full Document Right Arrow Icon
h = 0.1 h = 0.05 xy x(n) y(n) 1.00 5.0000 1.00 5.0000 1.10 3.9900 1.05 4.4475 1.20 3.2546 1.10 3.9763 1.30 2.7236 1.15 3.5751 1.40 2.3451 1.20 3.2342 1.50 2.0801 1.25 2.9452 1.30 2.7009 1.35 2.4952 1.40 2.3226 1.45 2.1786 1.50 2.0592 h = 0.1 h = 0.05 x(n) y(n) x(n) y(n) 0.00 2.0000 0.00 2.0000 0.10 1.6600 0.05 1.8150 0.20 1.4172 0.10 1.6571 0.30 1.2541 0.15 1.5237 0.40 1.1564 0.20 1.4124 0.50 1.1122 0.25 1.3212 0.30 1.2482 0.35 1.1916 0.40 1.1499 0.45 1.1217 0.50 1.1056 h = 0.1 h = 0.05 x(n) y(n) x(n) y(n) 0.00 0.0000 0.00 0.0000 0.10 0.1005 0.05 0.0501 0.20 0.2030 0.10 0.1004 0.30 0.3098 0.15 0.1512 0.40 0.4234 0.20 0.2028 0.50 0.5470 0.25 0.2554 0.30 0.3095 0.35 0.3652 0.40 0.4230 0.45 0.4832 0.50 0.5465 6 Numerical Solutions of Ordinary Differential Equations Exercises 6.1 All tables in this chapter were constructed in a spreadsheet program which does not support subscripts. Consequently, x n and y n will be indicated as x ( n ) and y ( n ), respectively. 1. 2. 3. 266
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
h = 0.1 h = 0.05 x(n) y(n) x(n) y(n) 0.00 1.0000 0.00 1.0000 0.10 1.1110 0.05 1.0526 0.20 1.2515 0.10 1.1113 0.30 1.4361 0.15 1.1775 0.40 1.6880 0.20 1.2526 0.50 2.0488 0.25 1.3388 0.30 1.4387 0.35 1.5556 0.40 1.6939 0.45 1.8598 0.50 2.0619 h = 0.1 h = 0.05 x(n) y(n) x(n) y(n) 0.00 0.0000 0.00 0.0000 0.10 0.0952 0.05 0.0488 0.20 0.1822 0.10 0.0953 0.30 0.2622 0.15 0.1397 0.40 0.3363 0.20 0.1823 0.50 0.4053 0.25 0.2231 0.30 0.2623 0.35 0.3001 0.40 0.3364 0.45 0.3715 0.50 0.4054 h = 0.1 h = 0.05 x(n) y(n) x(n) y(n) 0.00 0.0000 0.00 0.0000 0.10 0.0050 0.05 0.0013 0.20 0.0200 0.10 0.0050 0.30 0.0451 0.15 0.0113 0.40 0.0805 0.20 0.0200 0.50 0.1266 0.25 0.0313 0.30 0.0451 0.35 0.0615 0.40 0.0805 0.45 0.1022 0.50 0.1266 h = 0.1 h = 0.05 x(n) y(n) x(n) y(n) 0.00 0.5000 0.00 0.5000 0.10 0.5215 0.05 0.5116 0.20 0.5362 0.10 0.5214 0.30 0.5449 0.15 0.5294 0.40 0.5490 0.20 0.5359 0.50 0.5503 0.25 0.5408 0.30 0.5444 0.35 0.5469 0.40 0.5484 0.45 0.5492 0.50 0.5495 Exercises 6.1 4. 5. 6. 7. 267
Background image of page 2
h = 0.1 h = 0.05 x(n) y(n) x(n) y(n) 0.00 1.0000 0.00 1.0000 0.10 1.1079 0.05 1.0519 0.20 1.2337 0.10 1.1079 0.30 1.3806 0.15 1.1684 0.40 1.5529 0.20 1.2337 0.50 1.7557 0.25 1.3043 0.30 1.3807 0.35 1.4634 0.40 1.5530 0.45 1.6503 0.50 1.7560 h = 0.1 h = 0.05 x(n) y(n) x(n) y(n) 1.00 1.0000 1.00 1.0000 1.10 1.0095 1.05 1.0024 1.20 1.0404 1.10 1.0100 1.30 1.0967 1.15 1.0228 1.40 1.1866 1.20 1.0414 1.50 1.3260 1.25 1.0663 1.30 1.0984 1.35 1.1389 1.40 1.1895 1.45 1.2526 1.50 1.3315 h = 0.1 h = 0.05 x(n) y(n} x(n) y(n} 0.00 0.5000 0.00 0.5000 0.10 0.5250 0.05 0.5125 0.20 0.5498 0.10 0.5250 0.30 0.5744 0.15 0.5374 0.40 0.5986 0.20 0.5498 0.50 0.6224 0.25 0.5622 0.30 0.5744 0.35 0.5866 0.40 0.5987 0.45 0.6106 0.50 0.6224 h = 0.1 h = 0.05 x(n) y(n} exact x(n) y(n} exact 0.00 2.0000 2.0000 0.00 2.0000 2.0000 0.10 2.1220 2.1230 0.05 2.0553 2.0554 0.20 2.3049 2.3085 0.10 2.1228 2.1230 0.30 2.5858 2.5958 0.15 2.2056 2.2061 0.40 3.0378 3.0650 0.20 2.3075 2.3085 0.50 3.8254 3.9082 0.25 2.4342 2.4358 0.30 2.5931 2.5958 0.35 2.7953 2.7997 0.40 3.0574 3.0650 0.45 3.4057 3.4189 0.50 3.8840 3.9082 Exercises 6.1 8. 9. 10. 11. 268
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
1.1 1.2 1.3 1.4 x 5 10 15 20 y IMPROVED h=0.1 EULER EULER x(n) y(n) y(n) 1.00 1.0000 1.0000 1.10 1.2000 1.2469 1.20 1.4938 1.6668 1.30 1.9711 2.6427 1.40 2.9060 8.7988 Exercises 6.1 12. (a) (b) 13. (a) Using the Euler method we obtain y (0 . 1) y 1 =1 . 2. (b) Using y 0 =4 e 2 x we see that the local truncation error is y 0 ( c ) h 2 2 e 2 c (0 . 1) 2 2 =0 . 02 e 2 c . Since e 2 x is an increasing function, e 2 c e 2(0 . 1) = e 0 . 2 for 0 c 0 . 1. Thus an upper bound for the local truncation error is 0 . 02 e 0 . 2 . 0244. (c) Since y (0 . 1)= e 0 . 2 . 2214, the actual error is y (0 . 1) y 1 . 0214, which is less than 0 . 0244. (d) Using the Euler method with h . 05 we obtain y (0 . 1) y 2 . 21. (e) The error in (d) is 1 . 2214 1 . 21 = 0 . 0114. With global truncation error O ( h ), when the step size is halved we expect the error for h . 05 to be one-half the error when h . 1. Comparing 0 . 0114 with 0 . 214 we see that this is the case. 14. (a) Using the improved Euler method we obtain y (0 . 1) y 1 . 22. (b) Using y 0 =8 e 2 x we see that the local truncation error is y 0 ( c ) h 3 6 e 2 c (0 . 1) 3 6 . 001333 e 2 c . Since e 2 x is an increasing function, e 2 c e 2(0 . 1) = e 0 . 2 for 0 c 0 . 1. Thus an upper bound for the local truncation error is 0 . 001333 e 0 . 2 . 001628. (c) Since y (0 . e 0 . 2 . 221403, the actual error is y (0 . 1) y 1 . 001403 which is less than 0 . 001628. (d) Using the improved Euler method with h . 05 we obtain y (0 . 1) y 2 . 221025. (e) The error in (d) is 1 . 221403 1 . 221025 = 0 . 000378. With global truncation error O ( h 2 ), when the step size is halved we expect the error for h . 05 to be one-fourth the error for h . 1. Comparing 0 . 000378 with 0 . 001403 we see that this is the case.
Background image of page 4
Image of page 5
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 24

Chapter 6 - 6 Numerical Solutions of Ordinary Differential...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online