Chapter 15

Chapter 15 - 15 Integral Transform Method Exercises 15.1 1....

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon
15 Integral Transform Method Exercises 15.1 1. (a) The result follows by letting τ = u 2 or u = τ in erf( t )= 2 π Z t 0 e u 2 du . (b) Using { t 1 / 2 } = π s 1 / 2 and the Frst translation theorem, it follows from the convolution theorem that n erf( t ) o = 1 π ½ Z t 0 e τ τ ¾ = 1 π { 1 } n t 1 / 2 e t o = 1 π 1 s n t 1 / 2 o ¯ ¯ ¯ ¯ s s +1 = 1 π 1 s π s +1 = 1 s s . 2. Since erfc( t )=1 erf( t )wehave n erfc( t ) o = { 1 }− n erf( t ) o = 1 s 1 s s = 1 s · 1 1 s ¸ . 3. By the Frst translation theorem, n e t erf( t ) o = n erf( t ) o ¯ ¯ ¯ ¯ s s 1 = 1 s s ¯ ¯ ¯ ¯ s s 1 = 1 s ( s 1) . 4. By the Frst translation theorem and the result of Problem 2, n e t erfc( t ) o = n erfc( t ) o ¯ ¯ ¯ ¯ s s 1 = ± 1 s 1 s s ¯ ¯ ¯ ¯ s s 1 = 1 s 1 1 s ( s 1) = s 1 s ( s 1) = s 1 s ( s + 1)( s 1) = 1 s ( s + 1) . 5. ±rom table entry 3 and the Frst translation theorem we have ( e Gt/C erf ² x 2 r RC t ) = ( e Gt/C 1 erfc ² x 2 r RC t ) = n e Gt/C o ( e Gt/C erfc ² x 2 r RC t ) = 1 s + G/C e x RC s s ¯ ¯ ¯ ¯ s s + G/C = 1 s + G/C e x RC s + G/C s + G/C = C Cs + G ³ 1 e x RCs + RG ´ . 702
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Exercises 15.1 6. We frst compute sinh a s s sinh s = e a s e a s s ( e s e s ) = e ( a 1) s e ( a +1) s s (1 e 2 s ) = e ( a 1) s s h 1+ e 2 s + e 4 s + ··· i e ( a +1) s s h e 2 s + e 4 s + i = e (1 a ) s s + e (3 a ) s s + e (5 a ) s s + e (1+ a ) s s + e (3+ a ) s s + e (5+ a ) s s + = X n =0 e (2 n +1 a ) s s e (2 n +1+ a ) s s . Then ½ sinh a s s sinh s ¾ = X n =0 ( e (2 n +1 a ) s s ) ( e (2 n +1+ a ) s s ) = X n =0 · erFc ± 2 n +1 a 2 t erFc ± 2 n +1+ a 2 t ¶¸ = X n =0 ±· 1 erF ± 2 n a 2 t ¶¸ · 1 erF ± 2 n a 2 t ¶¸¶ = X n =0 · erF ± 2 n a 2 t erF ± 2 n a 2 t ¶¸ . 7. Taking the Laplace transForm oF both sides oF the equation we obtain { y ( t ) } = { 1 }− ½ Z t 0 y ( τ ) t τ ¾ Y ( s )= 1 s Y ( s ) π s s + π s Y ( s 1 s Y ( s 1 s ( s + π ) . Thus y ( t ½ 1 s ( s + π ) ¾ = e πt erFc( ) . By entry 5 in the table 8. Using entries 3 and 5 in the table, we have ( e ab e b 2 t erFc ± b t + a 2 t + erFc ± a 2 t ) = ½ e ab e b 2 t erFc ± b t + a 2 t ¶¾ + ½ a 2 t ¾ = e a s s ( s + b ) + e a s s 703
Background image of page 2
-10 -5 5 10 x -2 -1 1 2 y erfHxL erfcHxL Exercises 15.1 = e a s · 1 s 1 s ( s + b ) ¸ = e a s · 1 s s s ( s + b ) ¸ = e a s · s + b s s ( s + b ) ¸ = be a s s ( s + b ) .
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 4
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 37

Chapter 15 - 15 Integral Transform Method Exercises 15.1 1....

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online