AEM_3e_Chapter17

# AEM_3e_Chapter17 - Part V Complex Analysis 17 1 3 3i...

This preview shows pages 1–4. Sign up to view the full content.

Part V Complex Analysis 17 17 Functions of a Complex Variable EXERCISES 17.1 Complex Numbers 1. 3+3 i 2. 4 i 3. i 8 =( i 2 ) 4 1) 4 =1 4. i 11 = i ( i 2 ) 5 = i ( 1) 5 = i 5. 7 13 i 6. 3 9 i 7. 7+5 i 8. 7+8 i 9. 11 10 i 10. 3 4 + 2 3 i 11. 5+12 i 12. 2 2 i 13. 2 i 14. i 1+ i · 1 i 1 i = i +1 2 = 1 2 + 1 2 i 15. 2 4 i 3+5 i · 3 5 i 3 5 i = 14 22 i 34 = 7 17 11 17 i 16. 10 5 i 6+2 i · 6 2 i 6 2 i = 50 50 i 40 = 5 4 5 4 i 17. 9+7 i i · 1 i 1 i = 16 2 i 2 =8 i 18. 3 i 11 2 i · 11 + 2 i 11 + 2 i = 35 5 i 125 = 7 25 1 25 i 19. 2 11 i 6 i · 6+ i i = 23 64 i 37 = 23 37 64 37 i 20. 4+3 i 3+4 i · 3 4 i 3 4 i = 24 7 i 25 = 24 25 7 25 i 21. (1 + i )(10 + 10 i ) = 10(1 + i ) 2 =20 i 22. [(1 + i )(1 i )] 2 (1 i )=4 4 i 23. 20+23 i + 1 2 i · 2+ i i =20+23 i + 2 5 + 1 5 i = 102 5 + 116 5 i 24. (2+3 i )( i ) 2 = 2 3 i 25. i i · 9 7 i 9 7 i = 7+9 i 130 = 7 130 + 9 130 i 26. 1 6+8 i · 6 8 i 6 8 i = 6 8 i 84 = 1 14 2 21 i 854

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
17.2 Powers and Roots 27. x x 2 + y 2 28. x 2 y 2 29. 2 y 4 30. 0 31. p ( x 1) 2 +( y 3) 2 32. p 36 x 2 +16 y 2 33. 2 x +2 yi = 9+2 i implies 2 x = 9 and 2 y = 2. Hence z = 9 2 + i . 34. x +3 = 7+6 i implies x 7 and 3 y = 6. Hence z =7+2 i . 35. x 2 y 2 xyi =0+ i implies x 2 y 2 = 0 and 2 xy =1 .Now y = x implies 2 x 2 = 1 and so x = ± 1 / 2. The choice y = x gives 2 x 2 = 1 which has no real solution. Hence z = 1 2 + 1 2 i and z = 1 2 1 2 i . 36. x 2 y 2 4 x 2 xy 4 y ) i =0+0 i implies x 2 y 2 4 x = 0 and y ( 2 x 4) = 0. If y = 0 then x ( x 4) = 0 and so z = 0 and z =4 .If 2 x 4=0or x = 2 then 12 y 2 =0or y = ± 2 3. This gives z = 2+2 3 i and z = 2 2 3 i . 37. | 10+8 i | = 164 and | 11 6 i | = 157. Hence 11 6 i is closer to the origin. 38. | 1 2 1 4 i | = 5 4 and | 2 3 + 1 6 i | = 17 6 . Since 5 4 < 17 6 , 1 2 1 4 i is closer to the origin. 39. | z 1 z 2 | = | ( x 1 x 2 )+ i ( y 1 y 2 ) | = p ( x 1 x 2 ) 2 y 1 y 2 ) 2 which is the distance formula in the plane. 40. By the triangle inequality, | z +6+8 i |≤| z | + | 6+8 i | . On the circle, | z | = 2 and so | z i |≤ 2+ 100 = 12. EXERCISES 17.2 Powers and Roots 1. 2(cos2 π + i sin2 π ) 2. 10(cos π + i sin π ) 3. 3 µ cos 3 π 2 + i sin 3 π 2 4. 6 ³ cos π 2 + i sin π 2 ´ 5. 2 ³ cos π 4 + i sin π 4 ´ 6. 5 2 µ cos 7 π 4 + i sin 7 π 4 7. 2 µ cos 5 π 6 + i sin 5 π 6 8. 4 µ cos 4 π 3 + i sin 4 π 3 9. 3 2 2 µ cos 5 π 4 + i sin 5 π 4 10. 6 h cos ³ π 6 ´ + i sin ³ π 6 ´i 11. z = 5 3 2 5 2 i 12. z = 8+8 i 13. z =5 . 5433 + 2 . 2961 i 14. z =8 . 0902 + 5 . 8779 i 15. z 1 z 2 · cos µ π 8 + 3 π 8 + i sin µ π 8 + 3 π 8 ¶¸ i ; z 1 z 2 = 1 2 · cos µ π 8 3 π 8 + i sin µ π 8 3 π 8 ¶¸ = 2 4 2 4 i 855
17.2 Powers and Roots 16. z 1 z 2 = 6 h cos ³ π 4 + π 12 ´ + i sin ³ π 4 + π 12 ´i = 6 2 + 3 2 2 i z 1 z 2 = 6 3 h cos ³ π 4 π 12 ´ + i sin ³ π 4 π 12 ´i = 2 2 + 6 6 i 17.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

## This homework help was uploaded on 04/15/2008 for the course MATH 333 taught by Professor Attelle during the Spring '08 term at Illinois Tech.

### Page1 / 23

AEM_3e_Chapter17 - Part V Complex Analysis 17 1 3 3i...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online