{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

# Matlab_HW1 - the solution of the set F = rref(E digits(4...

This preview shows page 1. Sign up to view the full content.

% Problem 1. Solve the set using the Gauss-Jordan elimination % Part a format short A = [6 3 9 6 -9 1 4 5 8 -2 9 6 12 5 5 4 2 6 8 10]; % the solution of the set B = rref(A) % Part b C = [-1 -9 11 0 36 0 4 3 7 -6 1 -5 9 3 8 5 0 3 6 -15]; % the solution of the set D = rref(C) % Problem 2 syms theta % We have two equations which represent the sum of forces by x and y. % 1. x: F1*cos30-F2*cos30-Fr*sin(theta)=0 % 2. y: F1*sin30+F2*sin30-Fr*cos(theta)=0 % Solve this set by using Gauss-Jordan Elimination. E = [cos(30*pi/180) -cos(30*pi/180) 400*sin(theta) sin(30*pi/180) sin(30*pi/180) 400*cos(theta)]
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: % the solution of the set F = rref(E) digits(4); vpa(F) B = 1.0000 0 14.1429 7.4286 -15.5714 4.0000 D = -12.6680 -17.0810 -11.8543 13.9838 E = [ sqrt(3/4), -sqrt(3/4), 400*sin(theta)] 1/2, 1/2, 400*cos(theta)] F = 1, 0, 400*cos(theta)+400/3*3^(1/2)*sin(theta)] 1, 400/3*(-sin(theta)+3^(1/2)*cos(theta))*3^(1/2)] ans = 1., 0., 400.*cos(theta)+230.9*sin(theta)] 1., -230.9*sin(theta)+399.9*cos(theta)]...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online