# Chapter 11 - CHAPTER 11 INFINITE SEQUENCES AND SERIES 11.1...

This preview shows pages 1–4. Sign up to view the full content.

CHAPTER 11 INFINITE SEQUENCES AND SERIES 11.1 SEQUENCES 1. a 0, a , a , a " #\$% ±" ± " ± ± # œœ ± ± ± 11 2 13 2 14 3 1 4 39 41 6 # ### 2. a 1, a , a , a " "" # œœ œœ 1 1 1 1! ! 2 3! 6 4! 24 3. a 1, a , a , a "# \$ % ±± " ± ± ± ± ± " œœœœ ±œœ ± (1 ) ( ) ) ) 1 4 6 1 5 8 17 #\$ % & 4. a 2 ( 1) 1, a 2 ( 1) 3, a 2 ( 1) 1, a 2 ( 1) 3 "#\$% œ²± œ 5. a , a , a , a # #### """" # 2222 22 & % 6. a , a , a , a " ± " " ±±± " ## œ œœœœœœœ 1 3 2 1 7 2 1 5 24 28 1 6 2 % 7. a 1, a 1 , a , a , a , a , \$ % & ' "" " " # # œ œ²œ œ² œ œ ² œ œ 3 3 7 7 15 15 31 63 4 4 8 8 16 32 % a, a ()*" ! œœœ œ 127 255 511 1023 64 128 256 512 8. a 1, a , a , a , a , a , a , a , \$ % & ' ( ) " " " " " # # œ œ œ œ œ œ œ œ ˆ‰ ˆ ‰ " 3 6 4 4 5 1 0 7 0 5040 40,320 64 a *" ! 362,880 3,628,800 9. a 2, a 1, a , a , a , \$ % & # # " œ ±œ œ œ ) ( 2 ) ) ( 1 ) 8 ) ) % " # & " 4 a , a , a , a , a '( ) * " ! """ " " œ 16 3 64 1 8 256 10. a 2, a 1, a , a , a , a , " # \$ %&' œ± œ œ œ œ 1( 2) 2( 1) 33 4 5 5 3 34 †† 2 3 " # a ! 749 5 11. a 1, a 1, a 1 1 2, a 2 1 3, a 3 2 5, a 8, a 13, a 21, a 34, a 55 " # \$%&' ! œ œ œ œ œ œ œ 12. a 2, a 1, a , a , a 1, a 2, a 2, a 1, a , a \$ % & ' () * " ! # ± ± œ œ œ œ œ œ ˆ " # 1 13. a ( 1) , n 1, 2, 14. a ( 1) , n 1, 2, n n n1 n œ á œ á ² 15. a ( 1) n , n 1, 2, 16. a , n 1, 2, n n n œ á œ œ á ²# ±" # 17. a n 1, n 1, 2, 18. a n 4 , n 1, 2, n n œ ± œá œ ±œá # 19. a 4n 3, n 1, 2, 20. a 4n 2 , n 1, 2, n n œ± œ á 21. a , n 1, 2, 22. a , n 1, 2, n n 1(1 ) n( 1 ) n á œ œ Ú Û œ á ²± # ±²± n 23. lim 2 (0.1) 2 converges (Theorem 5, #4) n Ä_ ²œ Ê n

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
698 Chapter 11 Infinite Sequences and Series 24. lim lim 1 1 converges nn Ä_ n( ) (1 ) ±² " ² œ± œ Ê 25. 1 converges n ² ±# # ² ± 2n 2 1n 2 2 œœ œ ² Ê ˆ‰ " " n n 26. diverges Ä _ Ä _ 2n 13n 2n 3 ±" ² ± ² È È Š‹ ² _ Ê " " È È n n 27. 5 converges Ä _ Ä _ ± ² ± 5n n8 n 5 1 % %\$ " % ² Ê n 8 n 28. 0 converges n Ä _ Ä _ Ä _ n3 n 5n 6 (n 3)(n 2) n ±± " ± ± ± # # œ Ê 29. lim (n 1) diverges n Ä _ Ä _ Ä _ n2 n1 (n 1)(n 1) # ²± ²² ² œ _ Ê 30 diverges Ä _ Ä _ ² ² ² n 70 4n n 4 \$ # _ Ê " # # n 70 n 31. 1 ( 1) does not exist diverges 32. lim ( 1) 1 does not exist diverges Ä _ Ä _ ab Ê ² ² Ê n n " n 33. 1 1 converges Ä _ Ä _ ˆ ˆ n n n " " " " " ## # # ²œ ± ²œÊ 34. 2 3 6 converges 35. 0 converges Ä _ Ä _ ² ± œÊ œÊ "" # ² ²" () 36. 0 converges Ä _ Ä _ œ Ê " ²" n n n 37. 2 converges n Ä _ Ä _ Ä _ É É Ê È 2n 2n œ Ê 2 1 ± " n 38. diverges Ä _ Ä _ (0.9) 9 0 n _ Ê n 39. lim sin sin sin 1 converges Ä _ Ä _ 11 1 # ±œ ± œ œ Ê 40. lim n cos (n ) lim (n )( 1) does not exist diverges Ä _ Ä _ 1 œ² Ê n 41. 0 because converges by the Sandwich Theorem for sequences n Ä _ sin n sin n n n Ÿ Ÿ Ê 42. 0 because 0 converges by the Sandwich Theorem for sequences n Ä _ sin n sin n # " n œŸ Ÿ Ê 43. 0 converges (using l'Hopital's rule) ^ Ä _ Ä _ n ln 2 " Ê 44. diverges (using l'Hopital's rule) ^ n n Ä _ Ä _ Ä _ Ä _ 33 l n 3 n 6 n 6 3( ln 3 ) 3 ) \$# #\$ œ œœœ _ Ê 45. 0 converges n n Ä _ Ä _ Ä _ Ä _ ln (n ) n 1 ± ± È È œ œ Ê " " # " n 2 n n È È
Section 11.1 Sequences 699 46. lim 1 converges nn Ä _ Ä _ ln n ln 2n œœ Ê ˆ‰ " n 2 2n 47. lim 8 1 converges (Theorem 5, #3) n Ä _ 1n Î œÊ 48. lim (0.03) 1 converges (Theorem 5, #3) n Ä _ Î 49. 1 e converges (Theorem 5, #5) n Ä _ ±œ Ê 7 n n ( 50. 1 1 e converges (Theorem 5, #5) Ä _ Ä _ ’“ ²œ ± œ Ê " ±" ±" () n n 51. 10n lim 10 n 1 1 1 converges (Theorem 5, #3 and #2) Ä _ Ä _ È n œ Ê ÎÎ †† 52. n n 1 1 converges (Theorem 5, #2) Ä _ Ä _ È È n n # # # œ Ê 53. 1 converges (Theorem 5, #3 and #2) n Ä _ 3 n1 lim 3 lim n Î " œ Ê n n Ä_ Ä_ Î Î 54.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 02/16/2008 for the course MATH 1920 taught by Professor Pantano during the Spring '06 term at Cornell University (Engineering School).

### Page1 / 82

Chapter 11 - CHAPTER 11 INFINITE SEQUENCES AND SERIES 11.1...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online