# 223midterm220121 - University of Toronto Department of...

• Test Prep
• 9
• 100% (1) 1 out of 1 people found this document helpful

This preview shows page 1 - 9 out of 9 pages.

University of TorontoDepartment of MathematicsMAT223H1SLinear Algebra IMidterm Exam IIMarch 23, 2012P. Mondal, S. Morgan, H. Petzka, S. Uppal, Y. ZongDuration: 1 hour 30 minutesLast Name:Given Name:Student Number:Tutorial Group:No calculators or other aids are allowed.FOR MARKER USE ONLYQuestionMark1/102/103/104/105/106/5TOTAL/551of9
1.Consider the linesL1andL2whose parametric equations are given by(x, y, z) = (1,3,2) +s(1,0,2) and (x, y, z) = (-1,7,4) +t(-1,2,1)respectively.(a)Show thatL1andL2intersect and find the point of intersection.(b)Find the equation of the plane that containsL1andL2.2of9
EXTRA PAGE FOR QUESTION 1 - do not remove3of9
2.LetA=120030000000104120-11. Find a basis for each of the following subspaces:(i)nullspace ofA.(ii)row space ofA.(ii)column space ofA.4of9
3.ConsiderR3together with inner product<(x1, x2, x3),(y1, y2, y3)>= 2x1y1+x2y2+ 3x3y3.(a)Use the Gram-Schmidt procedure to find anorthonormalbasis forW=Span{(-1,1,0),(-1,1,2)}.(b)Find the orthogonal projection of (1,1,
• • • 