BASIC EDUCATION DEPARTMENTSenior High SchoolA.Y. 2020-2021First SemesterGENERALMATHEMATICSModule 1THIRD–MID QUARTERLearningPacket

BASIC EDUCATION DEPARTMENTSenior High SchoolFirst QuarterAY 2020-2021, First SemesterGrade 11–General MathematicsName: ________________________________Date: ______________________________Teacher: _______________________________Year and Section: ____________________Activity:Concept NotesActivity Title:Input–Function–OutputLearning Target:Represent real-life situations using functions.Instructions:Observe and analyze the given table below.SituationSet of InputFormulaSet of OutputA. Area of a CircleAll radii? = 𝜋𝑟2All areas?B. Volume of aSphereAll radii𝑉 =43𝜋𝑟3All volume𝑉C. Amount of taxAll income??(?) = 5 +?1,000All tax amount?(?)D. Jeepney FareSucceeding kmdistance (?) after 4kilometers?(?) = ? + 9All amount?(?)•What have you observed among the given situations?•What does the formula represent in relation to the situation?•Does the input of each situation take any effect in the output?Choose one situation and show how various inputs create different outputs.Lesson 1: FunctionsEXPLORE

-is simply known as a set of ordered pair.-is a rule of correspondence that assigns each element of?to exactly one elementof?, wherein the first set of elements is called asdomainand the second set ofelements is called therange.BASIC EDUCATION DEPARTMENTSenior High SchoolFirst QuarterAY 2020-2021, First SemesterGrade 11–General MathematicsName: ________________________________Date: ______________________________Teacher: _______________________________Year and Section: ____________________Activity:Concept NotesActivity Title:Representing FunctionsLearning Target:Represent real-life situations using functions.Observe the following given ordered pairs.a.? = {(1, 2), (2, 3), (3, 4), (4, 5)}b.? = {(1, 1), (2, 2), (3, 3), (4, 4)}c.? = {(1, 0), (0, 1), (−1, 0), (0, −1)}d.? = {(−2, 4), (−1, 1), (0, 0), (2, 4)}Following the definition above, we can easily say that:a.___________________________________________________________________________________________b.___________________________________________________________________________________________c.___________________________________________________________________________________________d.___________________________________________________________________________________________Lesson 1.1: Representing FunctionsFIRM UPRELATIONFUNCTION

If a mathematical relation is presented through graphical form, we can easilydetermine whether it is a graph of a function by using the Vertical Line Test.TheVertical Line Teststates that a given graph is a function if and only if a vertical linedrawn through the graph intersects the graph at exactly one point.Observe the following graphs.A.B.C.D.Draw an imaginary vertical line passing through each graph in as many possiblepoints of intersections. If the line intersects the graph at exactly one point, then the graphis a function. Otherwise, the graph is just a relation.

Upload your study docs or become a

Course Hero member to access this document

Upload your study docs or become a

Course Hero member to access this document

End of preview. Want to read all 12 pages?

Upload your study docs or become a

Course Hero member to access this document

Term

Spring

Professor

N/A

Tags

Secondary school, Senior High school