{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

# hw6 - Granillo Yvette Homework 6 Due Oct 6 2005 3:00 am...

This preview shows pages 1–4. Sign up to view the full content.

Granillo, Yvette – Homework 6 – Due: Oct 6 2005, 3:00 am – Inst: Edward Odell 1 This print-out should have 20 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering. The due time is Central time. 001 (part 1 of 1) 10 points Find the derivative of f when f ( x ) = 4 sec x + 5 cos x . 1. f 0 ( x ) = sin x ( 4 sec 2 x + 5 ) 2. f 0 ( x ) = cos x ( 4 csc 2 x + 5 ) 3. f 0 ( x ) = sin x ( 4 sec 2 x - 5 ) correct 4. f 0 ( x ) = cos x ( 5 - 4 csc 2 x ) 5. f 0 ( x ) = sin x ( 5 - 4 sec 2 x ) 6. f 0 ( x ) = cos x ( 4 csc 2 x - 5 ) Explanation: Since d dx (sec x ) = sec x tan x = sin x sec 2 x while d dx (cos x ) = - sin x , we see that f 0 ( x ) = sin x ( 4 sec 2 x - 5 ) . keywords: Stewart5e, 002 (part 1 of 1) 10 points Find the derivative of f when f ( x ) = 3 x - 4 sin x . 1. f 0 ( x ) = 3 - 4 cos x correct 2. f 0 ( x ) = 3 + 4 cos x 3. f 0 ( x ) = 3 + 4 sin x 4. f 0 ( x ) = 4 - cos x 5. f 0 ( x ) = 3 - 4 sin x 6. f 0 ( x ) = 4 - sin x Explanation: Since d dx sin x = cos x , we see that f 0 ( x ) = 3 - 4 cos x . keywords: Stewart5e, 003 (part 1 of 1) 10 points Differentiate y = tan x - 2 sec x . 1. y 0 = 2 cos x + sin x 2. y 0 = cos x - sin x 3. y 0 = cos x + sin x 4. y 0 = 2 cos x - sin x 5. y 0 = cos x + 2 sin x correct Explanation: y = tan x - 2 sec x y 0 = sec x sec 2 x - (tan x - 2) sec x tan x sec 2 x = sec x ( sec 2 x - tan 2 x + 2 tan x ) sec 2 x = 1 + 2 tan x sec x

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Granillo, Yvette – Homework 6 – Due: Oct 6 2005, 3:00 am – Inst: Edward Odell 2 Alternate solution: Simplify y first: y = sin x - 2 cos x y 0 = cos x + 2 sin x keywords: Stewart5e, 004 (part 1 of 1) 10 points Find the derivative of f when f ( x ) = cos x + 1 sin x . 1. f 0 ( x ) = 1 cos x - 1 correct 2. f 0 ( x ) = 1 1 - cos x 3. f 0 ( x ) = - 1 sin x + 1 4. f 0 ( x ) = 1 1 + sin x 5. f 0 ( x ) = - 1 1 + cos x 6. f 0 ( x ) = 1 1 - sin x 7. f 0 ( x ) = 1 cos x + 1 8. f 0 ( x ) = 1 sin x - 1 Explanation: By the quotient rule, f 0 ( x ) = - sin 2 x - cos x (cos x + 1) sin 2 x = - cos x - ( sin 2 x + cos 2 x ) sin 2 x . But sin 2 x + cos 2 x = 1, so f 0 ( x ) = - cos x + 1 1 - cos 2 x = cos x + 1 (cos x - 1)(cos x + 1) . Consequently, f 0 ( x ) = 1 cos x - 1 . keywords: Stewart5e, 005 (part 1 of 1) 10 points Find the derivative of f when f ( x ) = 5 tan x - 2 cot x . 1. f 0 ( x ) = 5 - 3 cos x sin x cos x 2. f 0 ( x ) = 5 + 3 cos 2 x sin 2 x cos 2 x 3. f 0 ( x ) = 5 + 3 cos x sin x cos x 4. f 0 ( x ) = 5 - 3 cos 2 x sin 2 x cos 2 x correct 5. f 0 ( x ) = 5 + 3 sin 2 x sin 2 x cos 2 x 6. f 0 ( x ) = 5 - 3 sin 2 x sin 2 x cos 2 x Explanation: After differentiation f 0 ( x ) = 5 sec 2 x + 2 csc 2 x = 5 cos 2 x + 2 sin 2 x = 5 sin 2 x + 2 cos 2 x sin 2 x cos 2 x . Now 5 sin 2 x + 2 cos 2 x = 5 ( 1 - cos 2 x ) + 2 cos 2 x = 5 - 3 cos 2 x .
Granillo, Yvette – Homework 6 – Due: Oct 6 2005, 3:00 am – Inst: Edward Odell 3 Consequently, f 0 ( x ) = 5 - 3 cos 2 x sin 2 x cos 2 x . keywords: Stewart5e, 006 (part 1 of 1) 10 points Find the derivative of f when f ( x ) = tan x (3 + csc x ) . 1. f 0 ( x ) = sec 2 x (3 sin x + 1) 2. f 0 ( x ) = csc 2 x (3 sin x + 1) 3. f 0 ( x ) = csc 2 x (3 + sin x ) 4. f 0 ( x ) = sec 2 x (3 - sin x ) 5. f 0 ( x ) = csc 2 x (3 - cos x ) 6. f 0 ( x ) = sec 2 x (3 + sin x ) correct Explanation: Since d dx tan x = sec 2 x , d dx csc x = - csc x cot x , the Product Rule ensures that f 0 ( x ) = sec 2 x (3 + csc x ) - tan x csc x cot x = 3 sec 2 x + csc x (sec 2 x - 1) .

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 9

hw6 - Granillo Yvette Homework 6 Due Oct 6 2005 3:00 am...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online