Problem 3.(1 point)Express the point given in Cartesian coordinates in spherical co-ordinates(ρ,θ,φ). Note: you really only have to do the work forone, if you use a little geometry and your knowledge of the trigfunctions.A)74√2,74√2,-72√3=B)-74√2,74√2,-72√3=C)74√2,-74√2,+72√3=D)-74√2,-74√2,+72√3=Solution:SOLUTIONA)ρ2=px2+y2+z2=r74√22+74√22+(-72√3)2=√72=7The point74√2,74√2is in the first quadrant of thexy-plane, soθ=arctan(yx)=arctan74√2/74√2=arctan(1) =π4cos(φ) =zρ=-72√37=-12√3⇒φ=5π6Thus spherical coordinates are7,π4,5π6.B)ρ2=px2+y2+z2=r-74√22+74√22+(-72√3)2=√72=7The point-74√2,74√2is in the second quadrant of thexy-plane, soθ=arctan(yx)+π=arctan74√2/-74√2+π=arctan(-1)+π=-π4+π=3π4cos(φ) =zρ=-72√37=-12√3⇒φ=5π6Thus spherical coordinates are7,3π4,5π6.C)ρ2=px2+y2+z2=r74√22+-74√22+(+72√3)2=√72=7The point74√2,-74√2is in the fourth quadrant of thexy-plane, soθ=arctan(yx)+2π=arctan-74√2/74√2+2π=arctan(-1)+2π=-π4+2π=7π4cos(φ) =zρ=+72√37= +12√3⇒φ=π6Thus spherical coordinates are7,7π4,π6.D)ρ2=px2+y2+z2=r-74√22+-74√22+(-72√3)2=√72=7The point-74√2,-74√2is in the third quadrant of thexy-plane, soθ=arctan(yx)+π=arctan-74√2/-74√2+π=arctan(1)+π=π4+π=5π4cos(φ) =zρ=+72√37= +12√3⇒φ=π6Thus spherical coordinates are7,5π4,π6.Answer(s) submitted:•(7,arctan(1),((7pi )/4))•(7,)•(7,)•(7,)(incorrect)Correct Answers:•(7,0.785398,2.61799)•(7,2.35619,2.61799)•(7,5.49779,0.523599)•(7,3.92699,0.523599)Problem 4.(1 point)What are the cylindrical coordinates of the point whose sphericalcoordinates are(ρ,θ,φ) = (5,1,2π3)?r=θ=z=Solution:SOLUTIONr=ρsin(φ) =5sin(2π3)=5√32= (5/2)√3θ=1z=ρcos(φ) =5cos(2π3)=5(-12)=-5/2Thus cylindrical coordinates are((5/2)√3,1,-5/2)Answer(s) submitted:•4.3301•1•-2.5(correct)Correct Answers:•4.33013•1•-2.52