{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

MATH114 Fall 2007 - Final Cheat Sheet

# MATH114 Fall 2007 - Final Cheat Sheet - 13.5 Equations of...

This preview shows pages 1–2. Sign up to view the full content.

13.5 Equations of Lines and Planes Distance from a point to a plane: 1 1 1 2 2 2 ax by cz d D a b c + + + = + + 13.7 Cylindrical and Spherical Coordinates Rectangular ( , , ) x y z Cylindrical ( , , ) r z θ 2 2 2 r x y = + , tan x y θ = , z = z Cylindrical ( , , ) r z θ Rectangular ( , , ) x y z cos x r θ = , sin y r θ = , z z = Rectangular ( , , ) x y z Spherical ( , , ) ρ θ φ 2 2 2 2 x y z ρ = + + , cos z φ ρ = , cos sin x θ ρ φ = Spherical ( , , ) ρ θ φ Rectangular ( , , ) x y z sin cos x ρ φ θ = , sin sin y ρ φ θ = , cos z ρ φ = Spherical ( , , ) ρ θ φ Cylindrical ( , , ) r z θ sin r ρ φ = , θ θ = , cos z ρ φ = 14.3 Arc Length and Curvature Arc Length : [ ] [ ] [ ] 2 2 2 '( ) '( ) '( ) '( ) b b a a L f t g t h t dt r t dt = + + = Arc Length Function : ( ) '( ) t a s t r u du = , length of curve from a to t. Curvature : 3 '( ) '( ) ''( ) '( ) '( ) T t r t r t dT ds r t r t κ = = = Normal and Binormal Vectors: '( ) ( ) '( ) T t N t T t = , ( ) ( ) ( ) B t N t T t = Plane with T and N = Osculating Plane defined by B(t) Plane with N and B = Normal Plane defined by r’(t) 14.4 Motion in Space 0 ( cos ) x v t α = , 2 0 ( sin ) 0.5 y v t gt α = - '( ) ''( ) '( ) T r t r t a r t x = , '( ) ''( ) '( ) N r t r t a r t x = 15.2 Limits and Continuity To see if lim exists: x=0, y=0, x=y etc.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}