This preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis is an unformatted preview. Sign up to view the full document.
View Full DocumentPROBLEM 8.1 KNOWN: Flowrate and temperature of water in fully developed flow through a tube of prescribed diameter. FIND: Maximum velocity and pressure gradient. SCHEMATIC: ASSUMPTIONS: (1) Steady-state conditions, (2) Isothermal flow. PROPERTIES: Table A-6 , Water (300K): = 998 kg/m 3 , = 855 10-6 N s/m 2 . ANALYSIS: From Eq. 8.6, ( 29 D 6 4 m 4 0.01 kg/s R e 596. D 0.025m 855 1 kg m/s p m p- = = = & Hence the flow is laminar and the velocity profile is given by Eq. 8.15, ( 29 ( 29 2 o m u r 2 1 r/ r . u =- The maximum velocity is therefore at r = 0, the centerline, where ( 29 m u 0 2 u . = From Eq. 8.5 ( 29 m 2 2 3 m 4 0.01 kg/s u 0.020 m/s, D / 4 998 kg/ m 0.025m rp p = = = & hence ( 29 u 0 0.041 m/s. = Combining Eqs. 8.16 and 8.19, the pressure gradient is 2 m D d p 6 4 u d x R e 2D r = - ( 29 2 3 2 2 998 kg/m 0.020 m/s d p 64 0.86 kg/ m s d x 59 6 2 0.025 m =- =- 2-5 dp 0.86N/ m m 0.86 10 bar/m. dx =- =- < PROBLEM 8.2 KNOWN: Temperature and mean velocity of water flow through a cast iron pipe of prescribed length and diameter. FIND: Pressure drop. SCHEMATIC: ASSUMPTIONS: (1) Steady-state conditions, (2) Fully developed flow, (3) Constant properties. PROPERTIES: Table A-6 , Water (300K): = 997 kg/m 3 , = 855 10-6 N s/m 2 . ANALYSIS: From Eq. 8.22, the pressure drop is 2 m u p f L. 2D r = With 3 4 m D- 6 2 u D 997 kg/ m 0.2 m/s 0.15 m R e 3.50 10 855 10 N s/m r m = = = the flow is turbulent and with e = 2.6 10-4 m for cast iron (see Fig. 8.3), it follows that e/D = 1.73 10-3 and f 0.027. Hence, ( 29 ( 29 2 3 997 kg/ m 0.2 m/s p 0.02 7 600m 2 0.15 m = 2 2 p 2154 kg/ s m 2154 N/m = = p 0.0215 bar. = < COMMENTS: For the prescribed geometry, L/D = (600/0.15) = 4000 >> (x fd,h /D) turb 10, and the assumption of fully developed flow throughout the pipe is justified. PROBLEM 8.3 KNOWN: Temperature and velocity of water flow in a pipe of prescribed dimensions. FIND: Pressure drop and pump power requirement for (a) a smooth pipe, (b) a cast iron pipe with a clean surface, and (c) smooth pipe for a range of mean velocities 0.05 to 1.5 m/s. SCHEMATIC: ASSUMPTIONS: (1) Steady, fully developed flow. PROPERTIES: Table A.6 , Water (300 K): = 997 kg/m 3 , = 855 10-6 N s/m 2 , = / = 8.576 10-7 m 2 /s. ANALYSIS: From Eq. 8.22a and 8.22b, the pressure drop and pump power requirement are 2 m u p f L 2D = ( ) 2 m P p V p D 4 u = = (1,2) The friction factor, f, may be determined from Figure 8.3 for different relative roughness, e/D, surfaces or from Eq. 8.21 for the smooth condition, 3000 Re D 5 10 6 , ( ) ( ) 2 D f 0.790ln Re 1.64 = (3) where the Reynolds number is 5 m D 7 2 u D 1m s 0.25m Re 2.915 10 8.576 10 m s = = = (4) (a) Smooth surface: from Eqs. (3), (1) and (2), ( ) ( ) 2 5 f 0.790ln 2.915 10 1.64 0.01451 = = ( ) 3 2 2 4 2 p 0.01451 997 kg m0.... View Full Document
This preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentFundamentals of Heat and Mass Transfer [Frank P.Incropera - David P.DeWitt] Solution Manual - CH09
Fundamentals of Heat and Mass Transfer [Frank P.Incropera - David P.DeWitt] Solution Manual - CH10
Fundamentals of Heat and Mass Transfer [Frank P.Incropera - David P.DeWitt] Solution Manual - CH11
Fundamentals of Heat and Mass Transfer [Frank P.Incropera - David P.DeWitt] Solution Manual - CH12
CH03 (101-152)
Chapter_01
Electrical System annotated
Electrical System
Electromechanical Systems
Problem 8.91
Copyright © 2015. Course Hero, Inc.
Course Hero is not sponsored or endorsed by any college or university.