NunnQianJEP - Journal of Economic PerspectivesVolume 24...

This preview shows page 1 out of 27 pages.

Unformatted text preview: Journal of Economic Perspectives—Volume 24, Number 2—Spring 2010—Pages 163–188 The Columbian Exchange: A History of Disease, Food, and Ideas Nathan Nunn and Nancy Qian T he Columbian Exchange refers to the exchange of diseases, ideas, food crops, and populations between the New World and the Old World following the voyage to the Americas by Christopher Columbus in 1492. The Old World—by which we mean not just Europe, but the entire Eastern Hemisphere—gained from the Columbian Exchange in a number of ways. Discoveries of new supplies of metals are perhaps the best known. But the Old World also gained new staple crops, such as potatoes, sweet potatoes, maize, and cassava. Less calorie-intensive foods, such as tomatoes, chili peppers, cacao, peanuts, and pineapples were also introduced, and are now culinary centerpieces in many Old World countries, namely Italy, Greece, and other Mediterranean countries (tomatoes), India and Korea (chili peppers), Hungary (paprika, made from chili peppers), and Malaysia and Thailand (chili peppers, peanuts, and pineapples). Tobacco, another New World crop, was so universally adopted that it came to be used as a substitute for currency in many parts of the world. The exchange also drastically increased the availability of many Old World crops, such as sugar and coffee, which were particularly well-suited for the soils of the New World. The exchange not only brought gains, but also losses. European contact enabled the transmission of diseases to previously isolated communities, which Nathan Nunn is an Assistant Professor of Economics, Harvard University, Cambridge, Massachusetts. During the 2009–2010 academic year, he was the Trione Visiting Professor of Economics at Stanford University, Stanford, California. Nancy Qian is an Assistant Professor of Economics, Yale University, New Haven, Connecticut. Both authors are also Faculty Research Fellows, National Bureau of Economic Research (NBER), Cambridge, Massachusetts, and Affiliates, Bureau for Research and Economic Analysis of Development (BREAD). Their e-mail addresses are 〈[email protected]〉 and 〈[email protected]〉. [email protected][email protected]〉 ■ doi=10.1257/jep.24.2.163 164 Journal of Economic Perspectives caused devastation far exceeding that of even the Black Death in fourteenth-century Europe. Europeans brought deadly viruses and bacteria, such as smallpox, measles, typhus, and cholera, for which Native Americans had no immunity (Denevan, 1976). On their return home, European sailors brought syphilis to Europe. Although less deadly, the disease was known to have caused great social disruption throughout the Old World (Sherman, 2007). The effects of the Columbian Exchange were not isolated to the parts of the world most directly participating in the exchange: Europe and the Americas. It also had large, although less direct, impacts on Africa and Asia. European exploration and colonization of the vast tropical regions of these continents was aided by the New World discovery of quinine, the first effective treatment for malaria. Moreover, the cultivation of financially lucrative crops in the Americas, along with the devastation of native populations from disease, resulted in a demand for labor that was met with the abduction and forced movement of over 12 million Africans during the sixteenth to nineteenth centuries (Lovejoy, 2000; Manning, 1990). The Columbian Exchange has provided economists interested in the longterm effects of history on economic development with a rich historical laboratory. Economic studies have thus far mainly focused on how European institutions, through colonialism, were transplanted to non-European parts of the world. The seminal papers by Engerman and Sokoloff (1997), La Porta, Lopez-de-Silanes, Shleifer, and Vishny (1997, 1998), and Acemoglu, Johnson, and Robinson (2001) examine the effects that European contact, taking the form of formal and informal colonial rule, had on other societies.1 In this paper, we attempt to broaden the scope of economic studies of the Columbian Exchange by studying aspects of the exchange that have received less attention. First, we pay particular attention to the effects that the exchange had on the Old World, rather than examining outcomes in the New World. Second, rather than concentrating on the effects of the exchange that work through institutional and political structures, we focus on the less-studied, but no less-important channels; namely, the biological exchange of food crops and disease. Our hope is that our broad descriptive overview of some of the neglected aspects of the Columbian Exchange will spur further more-rigorous studies of the long-term consequences of these aspects of the exchange. We are aware of only a handful of empirical papers that either focus on the effect of the exchange on the Old World or focus on channels other than legal institutions. Acemoglu, Johnson, and Robinson (2005) examine the effects of the three-corner Atlantic trade on Europe. They argue that the profits from the trade strengthened the merchant class, which resulted in stronger probusiness institutions and increased economic growth. Two studies have recently explored the effects from 1 Subsequent studies have since added to the understanding of the long-term effects of colonial rule and European contact on New World Societies. See for example Mitchener and McLean (2003), Berkowitz and Clay (2005, 2006), Acemoglu, Bautista, Querubin, and Robinson (2008), Dell (2008), and Nunn (2008a), as well as the review by Nunn (2009). Nathan Nunn and Nancy Qian 165 the botanical exchange. In Nunn and Qian (2009), using a generalized differencein-differences empirical strategy, we find that the introduction of potatoes to the Old World resulted in a significant increase in population and urbanization. Our finding complements earlier research by Mokyr (1981) that estimates the effects of the potato on population growth within Ireland. Hersh and Voth (2009) examine the benefits that arose from the increase in land for cultivating the Old World crops coffee and sugar after 1492. According to their calculations (see their table 9), the increased availability of sugar increased English welfare by 8 percent by 1850, while the greater availability of coffee increased welfare by 1.5 percent. In the following section, we examine the most devastating and unfortunate consequences of the Columbian Exchange, which arose from the exchange of disease between the Old and New Worlds. Next, we turn to the effects of the exchange that arose from the transfer of foods between the New and Old Worlds. We then examine the indirect consequences of the exchange on Africa and Asia. The final section of the paper offers concluding thoughts. Disease The Spread of Disease from the Old World to the New The list of infectious diseases that spread from the Old World to the New is long; the major killers include smallpox, measles, whooping cough, chicken pox, bubonic plague, typhus, and malaria (Denevan, 1976, p. 5). Because native populations had no previous contact with Old World diseases, they were immunologically defenseless. Dobyns (1983, p. 34) writes that “before the invasion of peoples of the New World by pathogens that evolved among inhabitants of the Old World, Native Americans lived in a relatively disease-free environment. . . . Before Europeans initiated the Columbian Exchange of germs and viruses, the peoples of the Americas suffered no smallpox, no measles, no chickenpox, no influenza, no typhus, no typhoid or parathyroid fever, no diphtheria, no cholera, no bubonic plague, no scarlet fever, no whooping cough, and no malaria.” Although we may never know the exact magnitudes of the depopulation, it is estimated that upwards of 80–95 percent of the Native American population was decimated within the first 100–150 years following 1492 (Newson, 2001). Within 50 years following contact with Columbus and his crew, the native Taino population of the island of Hispanola, which had an estimated population between 60,000 and 8 million, was virtually extinct (Cook, 1993). Central Mexico’s population fell from just under 15 million in 1519 to approximately 1.5 million a century later. Historian and demographer Nobel David Cook estimates that, in the end, the regions least affected lost 80 percent of their populations; those most affected lost their full populations; and a typical society lost 90 percent of its population (Cook, 1998, p. 5). The uncertainty surrounding the exact magnitude of the depopulation of the Americas arises because we don’t know the extent to which disease may 166 Journal of Economic Perspectives have depopulated the regions beyond the initial point of contact before literate European observers made physical contact with these populations (Dobyns, 1993). If disease traveled faster than the explorers, it would have killed a significant portion of native populations before direct contact, causing first-hand accounts of initial population sizes to be biased downward. The result is that 1491 population estimates for the Americas have varied wildly, from a lower-bound estimate of approximately 8 million (Kroeber, 1939) to an upper-bound estimate of over 110 million people (Dobyns, 1966). Surprisingly, despite decades of research, the range of the estimates has not narrowed, and no clear consensus has emerged about whether the true figure lies closer to the high or low end of the range. For examples of the opposing views, see Henige (1998) and Mann (2005). Syphilis: A New World Disease? There are very few examples of disease being spread from the New World to the Old.2 The most notable exception, and by far the most controversial, is venereal syphilis. Biologist Irwin Sherman (2007) lists venereal syphilis as one of the twelve diseases that changed the world. This may seem surprising, given that today venereal syphilis is a nonfatal disease that is effectively treated with penicillin. However, this was not always the case. Early on, in the late fi fteenth and early sixteenth centuries, the disease was frequently fatal, and its symptoms were much more severe. They included genital ulcers, rashes, large tumors, severe pain, dementia, and eventual death. Over time, as the disease evolved, its symptoms changed, becoming more benign and less fatal. By the seventeenth century, syphilis had developed into the disease that we know today (Crosby, 2003, pp. 151–53). Two theories of the origins of venereal syphilis exist. The first, referred to as the “Columbian hypothesis,” asserts that the disease-causing agent Treponema pallidum originated in the New World and was spread in 1493 by Christopher Columbus and his crew, who acquired it from the natives of Hispaniola through sexual contact. Upon return to Spain, some of these men joined the military campaign of Charles VIII of France and laid siege to Naples in 1495. Encamped soldiers exposed the local populations of prostitutes, which amplified disease transmission. Infected and disbanding mercenaries then spread the disease throughout Europe when they returned home. Within five years of its arrival, the disease was epidemic in Europe. Syphilis reached Hungary and Russia by 1497; Africa, the Middle East, and India by 1498; China by 1505; Australia by 1515; and Japan by 1569 (Crosby, 1969; Dennie, 1962; Harrison, 1959; Snodgrass, 2003; Sherman, 2007). The second theory, the “pre-Columbian hypothesis,” asserts that the disease had always existed in the Old World, and the fact that there were no accounts of the disease prior to the 1490s is because prior to this time it had not been differentiated 2 One reason for this is that Eurasian societies had domesticated more animals than societies of the Americas. Since many deadly human diseases originated as diseases among animals, this resulted in more disease originating in and being spread from Europeans to Native Americans, rather than vice versa (Diamond, 1997). The Columbian Exchange: A History of Disease, Food, and Ideas 167 from other diseases with similar symptoms (Cockburn, 1961, 1963; Hackett, 1963, 1967; Holcomb, 1934, 1935). Proponents of the pre-Columbian hypothesis cite pre-Exchange accounts of disease symptoms similar to venereal syphilis, as well as skeletal remains with scars that are similar to scars left by syphilis. The debates over the true origins of venereal syphilis have been a direct consequence of the difficulty in distinguishing venereal syphilis from other diseases that had similar symptoms and left similar bone scars (Parrot, 1879; Steinbock, 1976; Williams, 1932; Wright, 1971; Verano and Ubelaker, 1992). Recent findings from phylogenetics (the evolutionary study of the genetic relatedness of different populations of organisms) have added valuable evidence to the mystery of the origins of venereal syphilis. The evidence supports the Columbian hypothesis that venereal syphilis is in fact a New World disease. The recent study by Harper et al. (2008) found that the bacterium causing venereal syphilis arose relatively recently in humans and is most closely related to a variation of the tropical disease yaws found in a remote region of Guyana, South America. This relationship is most consistent with venereal syphilis, or some early ancestor, originating in the New World. After decades of debate, this powerful study showed that venereal syphilis was indeed a New World disease. The Transfer of New World Foods to the Old World The transfer of foods between the Old and New Worlds during the Columbian Exchange had important consequences for world history. Historian Alfred Crosby (1989, p. 666) describes the significance of the transfer of food crops between the continents, writing: “The coming together of the continents was a prerequisite for the population explosion of the past two centuries, and certainly played an important role in the Industrial Revolution. The transfer across the ocean of the staple food crops of the Old and New Worlds made possible the former.” There are two channels through which the Columbian Exchange expanded the global supply of agricultural goods. First, it introduced previously unknown species to the Old World. Many of these species—like potatoes, sweet potatoes, maize, and cassava (also known as manioc)—resulted in caloric and nutritional improvements over previously existing staples. Other crops such as tomatoes, cacao, and chili peppers were not by themselves especially rich in calories, but complemented existing foods by increasing vitamin intake and improving taste. In many instances, the New World foods had an important effect on the evolution of local cuisines. Chili peppers gave rise to spicy curries in India, to paprika in Hungary, and to spicy kimchee in Korea. Tomatoes significantly altered the cuisine of Italy and other Mediterranean countries. Second, the discovery of the Americas provided the Old World with vast quantities of relatively unpopulated land well-suited for the cultivation of certain crops that were in high demand in Old World markets. Crops such as sugar, coffee, soybeans, oranges, and bananas were all introduced to the New World, and the Americas quickly became the main suppliers of these crops globally. 168 Journal of Economic Perspectives Table 1 The World’s Most Popular Foods in 2000 Average Daily Consumption (calories) Rice Wheat Sugar Maize Potatoes Cassava Sorghum Sweet Potatoes Millet Soybeans Bananas Coconuts Apples Tomatoes Oranges Rye Yams Onions Plantains Barley 567 527 196 147 60 42 32 29 29 17 14 12 9 8 8 7 7 7 7 7 Annual Production (millions of tonnes) Sugar cane Rice Maize Wheat Potatoes Sugar beet Cassava Soybeans Sweet potatoes Barley Oil palm fruit Tomatoes Watermelons Bananas Grapes Oranges Apples Sorghum Coconuts Onions, dry Other Notable New World Foods: Cacao Beans 3 Eggplants Pineapples 2 Sunflower seed Chillies/peppers, green Pineapples Land Harvested (millions of hectares) 1,252.5 598.8 592.5 585.9 328.7 247.1 176.5 161.3 138.7 133.1 120.4 108.9 76.5 64.9 64.8 63.8 59.1 55.8 52.9 49.8 Wheat Rice Maize Soybeans Barley Sorghum Millet Rapeseed Sunflower seed Potatoes Sugar cane Cassava Oats Coffee, green Coconuts Chick peas Oil palm fruit Rye Sweet potatoes Olives 215.5 154.1 137.0 74.4 54.5 41.0 37.1 25.8 21.1 20.1 19.5 17.0 12.7 10.8 10.6 10.1 10.0 9.8 9.7 8.3 27.2 26.5 20.9 15.1 Cacao beans Natural rubber Tobacco Tomatoes 7.6 7.6 4.2 4.0 Source: The data are from the FAO’s ProdSTAT and Consumption Databases. See 〈 〉. Notes: All figures are for the year 2000. Bold type indicates a New World food crop. Italics indicate an Old World crop for which more than 26 percent of current world production is in the New World (26 percent is the fraction of arable land that is located in the New World). The table does not report the consumption of oils. Among oils, the fourth most consumed oil, sunflower oil, is derived from sunflowers, a New World crop. The extent to which foods indigenous to the New World today comprise an important portion of the world’s diet is illustrated by Table 1, which reports the world’s most popular foods in 2000. The first list reports foods with popularity measured by the average consumption of calories per person per day. Because this measure may overstate the popularity of high-calorie food crops, we also provide rankings based on production and land under cultivation. These are reported in the second and third lists. Foods that are indigenous to the New World are reported in bold text. From the table it is clear that today New World foods are an important part of our diets. Although the two most consumed crops (by any of the three measures) are Old World crops (either rice, wheat, or sugar), many of the next-most-important crops are from the New World. Four New World crops that Nathan Nunn and Nancy Qian 169 make it into the top ten by two or more measures are maize, potatoes, cassava, and sweet potatoes; tomatoes rank among the top 15 by two different measures. Also high on the list are a number of additional New World foods such as chili peppers and cacao, which despite not being consumed in large quantities, are of central importance to the cuisines of many countries. Staple Crops: Potatoes, Sweet Potatoes, Maize, and Cassava The exchange introduced a wide range of new calorically rich staple crops to the Old World—namely potatoes, sweet potatoes, maize, and cassava. The primary benefit of the New World staples was that they could be grown in Old World climates that were unsuitable for the cultivation of Old World staples. Crosby (2003, p. 177) writes: “The great advantage of the American food plants is that they make different demands of soils, weather and cultivation than Old World crops, and are different in the growing seasons in which they make these demands. In many cases the American crops do not compete with Old World crops but complement them. The American plants enable the farmer to produce food from soils that prior to 1492, were rated as useless because of their sandiness, altitude, aridity, and other factors.” This benefit of New World crops has resulted in their adoption in all parts of the world. This is shown by Table 2, which reports the top consuming countries for different New World foods. The New World crop maize has been widely adopted by a number of Old World countries including Lesotho, Malawi, and Zambia. The average person in Lesotho consumes an astonishing 1,500 calories per day from maize. Even more widely adopted than maize is cassava. The top ten cassava-consuming countries are all from the Old World. Although both foods do have their imperfections—for example, a diet of too much maize causes pellagra and consumption of insufficiently processed cassava results in konzo —they provide sustenance for millions of people around the world today. The table also shows that sweet potatoes have been widely adopted in the Old World and today are most heavily consumed i...
View Full Document

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture