EXM2_P3_1 - INERTIA B, 1/12*MB*LB^2, 0, 1/12*MB*LB^2 %...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
Sheet1 Page 1 % Kevin Menear % Multibody Dynamics - Spring '08 % Exam 2 - Problem #3 % % Body A - Rod A % Body B - Rod B % Point O - Newtonian origin % Point AO - COM of body A % Point BO - COM of body B % Point P - Point connecting bodies A,B % M - Unit of Mass % MA - Mass of body A % MB - Mass of body B % Q1 - Angle between N and A reference frames % Q2 - Angle between A and B reference frames % Q3 - Auxiliary angle between N and A references frames % Q4 - Auxiliary angle between N and A references frames % L - Unit of Length % LA - length of body A % LB - length of body B PAUSE 0 BODIES A,B POINTS O,P CONSTANTS M=1, L=0.10, MA=2*M, MB=M, LA=4*L, LB=2*L, G VARIABLES Q{2}',U{4}', TC, TC1, TC3 % Define Newtonian Reference Frame NEWTONIAN N % Define Masses of bodies J,K,L MASS A=MA,B=MB % Define Orientation of Bodies and Reference Frames SIMPROT(N,A,2,Q1) SIMPROT(A,B,3,Q2) % Define positions of key points P_O_AO>=-0.5*LA*A3> P_O_P>=LA*A3> P_P_BO>=0.5*LB*B2> % Define Inertia Properties for Bodies J,K,L INERTIA A, 1/12*MA*LA^2, 1/12*MA*LA^2, 0
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: INERTIA B, 1/12*MB*LB^2, 0, 1/12*MB*LB^2 % Create Kinematical Differential Equations Q1'=U1 Q2'=U2 % State velocities and angular velocities of key points V_O_N>=0*N1> Sheet1 Page 2 V2PTS(N,A,O,AO) V2PTS(N,A,O,P) V_P_A>=0*A1> V2PTS(N,B,P,BO) W_A_N>=U1*N2>+U3*A1>+U4*A3> W_B_A>=U2*B3> % Inform AUTOLEV that U3 and U4 are auxiliary and they should be constrained out AUXILIARY[1]=U3 AUXILIARY[2]=U4 CONSTRAIN(AUXILIARY[U3,U4]) % Specification of Applied Loads GRAVITY(-G*N3>) TORQUETC>=TC1*A1>+TC3*A3> TORQUE(N/B, TORQUETC>) TC=TC1*A1>+TC3*A3> % Solve for generalized active and generalized inertia forces ZERO=FR()+FRSTAR() % Form Kane's Dynamical Equations KANE([TC1,TC3]) % Specify the units for all variables and constants UNITS MA=kg, MB=kg, L=m, TC=N*m, & Q1=rad, Q2=rad, T=S, & U1=rad/s, U2=rad/s % State quantities to be output OUTPUT T,TC,Q1,Q2 % Write computer code associated with dynamics analysis CODE DYNAMICS() EXM2_P3.C...
View Full Document

This note was uploaded on 04/16/2008 for the course MANE Engineerin taught by Professor Scarton during the Spring '08 term at Rensselaer Polytechnic Institute.

Page1 / 2

EXM2_P3_1 - INERTIA B, 1/12*MB*LB^2, 0, 1/12*MB*LB^2 %...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online