# HW4_P4_2 - V_O_A&amp;amp;gt;=0&amp;amp;gt;...

This preview shows pages 1–2. Sign up to view the full content.

% Kevin Menear % Multibody Dynamics - Spring '08 % Exam 2 - Problem #3 % % Particle P1 % Particle D % Point O - Newtonian origin % M1 - Mass of Particle P1 % M2 - Mass of Particle D % Q1 - Horizontal Distance from O to P1 in RF B % Q2 - Verticel Distance from O to P1 in RF B % Q3 - Angle between B and E reference frames % W - Angle between A and B reference frames % L - length of body R PAUSE 0 FRAMES B, E POINTS O PARTICLES P1, D CONSTANTS M1, M2, L, W, G VARIABLES Q{5}',U{3}', Wt % Define Newtonian Reference Frame NEWTONIAN A % Define Masses of bodies J,K,L MASS P1=M1, D=M2 % Define Orientation of Bodies and Reference Frames SIMPROT(A,B,2,Wt) SIMPROT(B,E,3,Q3) % Define positions of key points P_O_P1>=Q1*B1>+Q2*B2> P_P1_D>=L*E1> % Create Kinematical Differential Equations Q4'=U1 Q5'=U2 Q3'=U3 % State velocities and angular velocities of key points

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: V_O_A&gt;=0&gt; W_B_A&gt;=W*B2&gt; W_E_B&gt;=U3*E3&gt; V_P1_A&gt;=U1*E1&gt;+U2*E2&gt;-W*Q1*E3&gt; V_D_A&gt;=U1*E1&gt;-(W*Q1+L*W*COS(Q3))*E3&gt; % Inform AUTOLEV that U3 and U4 are auxiliary and they should be constrained out DEPENDENT[1]=Dot(V_D_B&gt;,E2&gt;) DEPENDENT[2]=Dot(V_D_B&gt;,E3&gt;) CONSTRAIN(DEPENDENT[U3]) % Specification of Applied Loads GRAVITY(-G*A2&gt;) % Solve for generalized active and generalized inertia forces ZERO=FR()+FRSTAR() % Form Kane's Dynamical Equations KANE() % Specify the units for all variables and constants UNITS M1=kg, M2=kg, L=m, &amp; Q1=m, Q2=m, T=S, Q3=rad/s &amp; U1=m/s, U2=m/s % State quantities to be output OUTPUT T,U1,U2,Q3 % Write computer code associated with dynamics analysis CODE DYNAMICS() HW3_P4.C...
View Full Document

## HW4_P4_2 - V_O_A&amp;amp;gt;=0&amp;amp;gt;...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online