HW3_P1 - P_O_B2O>=-0.25*N2> P_O_B3O>=0.1*N3>

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
%............. Kevin Menear %............. Multibody Dynamics - Spring '08 %............. HW #3 - P#1 %............. Due: 3/20/08 % %............. Declare Bodies, Particles, Points, and Reference Frames BODIES B1,B2,B3 %............. B1 - BLOCK, B2 - 500MM BAR, B3 - 200MM BAR PARTICLES B4 POINTS O, SO %............. O - Origin, SO - COM of System NEWTONIAN N % %............. Define Masses of Bodies B1,B2,B3 and Particle B4 MASS B1=MB1=10,B2=MB2=1,B3=MB3=0.4,B4=MB4=5 % %............. Define Orientation of Bodies %............. Relate B reference frame to A reference frame to define orientation of Body B1 SIMPROT(N,B1,2,PI/6) %............. Bodies K and L can both be fully defined using only the A basis SIMPROT(N,B2,1,0) SIMPROT(N,B3,1,0) % %............. Define position of COM of Bodies B1,B2,B3 and Particle B4 P_O_B1O>=0.15*J1>-0.52*J2>+0.025J3>
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: P_O_B2O>=-0.25*N2> P_O_B3O>=0.1*N3> P_O_B4>=0.2*N3> % %............. Define Inertia Properties for Bodies B1,B2,B3 and Particle B4 INERTIA B1, 1/12*MB1*(0.04^2+.05^2), 1/12*MB1*(.05^2+.3^2), 1/12*MB1*(.04^2+.3^2), 0,0,0 INERTIA B2, 1/12*MB2*.5^2, 0, 1/12*MB2*.5^2, 0,0,0 INERTIA B3, 1/12*MB3*.2^2, 1/12*MB3*.2^2, 0, 0,0,0 %............. Define the COM of our System, S P_O_SO>=CM(O) %............. Define the Inertia of our System, S, about the COM of the System, SO I_S_SO>>=INERTIA(SO) %............. Express the Position vector from point O to point SO %............. and the Inertia tensor of our system about SO in the A basis %............. Note: 'A' reference frame is equal to Newtonian reference frame at this instant EXPRESS(P_O_SO>,N) EXPRESS(I_S_SO>>,N)...
View Full Document

This note was uploaded on 04/16/2008 for the course MANE Engineerin taught by Professor Scarton during the Spring '08 term at Rensselaer Polytechnic Institute.

Ask a homework question - tutors are online