logica-difusa.ppt - UNIDAD 2 CONCEPTOS Y FUNDAMENTOS DE...

This preview shows page 1 out of 96 pages.

Unformatted text preview: UNIDAD 2 CONCEPTOS Y FUNDAMENTOS DE LÓGICA DIFUSA. Conceptos y Fundamentos de Lógica Difusa. 2.1 Conceptos básicos de Lógica Difusa 2.1.1 Introducción y dos ejemplos. La técnica esencial de la lógica difusa se basa en cuatro conceptos fundamentales: 1). conjuntos difusos.- son conjuntos con fronteras uniformes o suaves. 2). variables lingüísticas.- Son variables cuyos valores son descritos cualitativamente y cuantitativamente por un conjunto difuso. … 3). Distribuciones de posibilidad.restricciones impuestas en el valor de una variable lingüística al asignarle un conjunto difuso. 4). Reglas difusas si-entonces.- un esquema de representación del conocimiento para describir una proyección funcional o una fórmula lógica que generaliza una implicación en la lógica de dos valores. Nota: Los tres primeros conceptos son fundamentales en todas las sub-áreas de la lógica difusa. También, el cuarto concepto es importante debido a que es la base de la mayoría de las aplicaciones industriales de la lógica difusa desarrolladas hasta hoy, lo cual incluye muchos sistemas de control lógico difuso. Problema A: Control simple de la mezcla de flujo de aire Temperatura ambiente, No tiene señal de retroalimentación de la temperatura ambiente actual. Tarea: controlar la cantidad de flujo de aire caliente y frío basado en una temperatura objetivo. El flujo es controlado al ajustar el voltaje a la bomba en la etapa de mezclado. V es el voltaje menor V es el voltaje mayor Temperatura Objetivo (T) Flujo de aire caliente Flujo de aire frío Controlador a lazo abierto Voltaje (V) Flujo de aire Mezclado Problema B: Control automático de una lavadora La naturaleza de las decisiones que realizan los seres humanos en este problema es fácil de entender y modelar. Tarea: Se desea automatizar la selección del ciclo y el tiempo de lavado basado en la cantidad de ropa y lo sucia que esta la ropa, lo cual es proporcionado por dos transductores. Cantidad de Ropa. Que tan sucia esta la ropa Selecció n Automáti ca Ciclo de lavado. Tiempo de lavado. 2.1.2 Conjuntos Difusos Un conjunto difuso es un conjunto con fronteras suaves. A A Fronteras en conjuntos clásicos Fronteras en conjuntos difusos Por ejemplo: Si se quisiera representar dentro de la teoría de conjuntos clásica, el conjunto de familias con ingresos anuales altos. Se propone un umbral: ≥ $ 80,000.00, Familias con un ingreso de $ 79,999.00; Limitación de la teoría de conjuntos clásica. Algunos conjuntos tienen fronteras bien definidas (el conjunto de personas casadas). Muchos otros no tienen fronteras bien definidas (el conjunto de parejas casadas felices, el conjunto de escuelas con buenos alumnos egresados, etc.). La teoría de conjuntos difusos al permitir que la membresía sea graduada en un conjunto da solución a las limitación que se presenta en la teoría de conjuntos clásica. Un conjunto difuso se define como una función que proyecta objetos de un dominio de conceptos (denominado Universo de Discurso) a sus valores de membresía en el conjunto. Dicha función se define como Función de Membresía y es denotada por el símbolo Griego µ. Por ejemplo: Representación de Familias de ingresos-altos. µ Alto 1 Ingresos al año 80 K 120 K El conjunto difuso es asociado a un término lingüístico Términos lingüísticos: beneficios Asociar un conjunto difuso a un término lingüístico ofrece dos beneficios importantes: 1. La asociación hace más fácil que un operador experto exprese su conocimiento usando términos lingüísticos. 2. El conocimiento expresado en términos lingüísticos es más fácil de comprender. Estos beneficios resultan en un ahorro significante en el costo del diseño, la modificación, y el mantenimiento de un sistema lógico difuso. Un concepto importante en la Lógica Difusa, que permite tener los dos beneficios descritos, es el de Variable lingüística. Es importante subrayar que un conjunto difuso siempre se define a partir del contexto de que se trate, auque dicho contexto no este explicito en el modelado del sistema. También, el contexto de definición de un termino lingüístico generalmente es especificado implícitamente dentro de la aplicación en la cual es utilizado. 2.1.2.1 Diseño de Funciones de Membresía Se puede entender por conjunto clásico: una colección o clase de objetos bien definidos. Objetos que pueden ser cualquier cosa, tales como: números, ciudades, colores, animales, temperatura, etc. Estos objetos se conocen como elementos o miembros del conjunto. En la teoría de los conjuntos clásicos, se utiliza la notación de función característica, ( A ), para indicar cuando un elemento cualquiera pertenece o no a un conjunto. El universo de discurso es el universo de toda la información disponible en un problema dado. Un conjunto difuso es un conjunto que contiene elementos, los cuales varían su grado de pertenencia en el conjunto. El concepto de función de membresía en la teoría de los conjuntos difusos es una medida de la pertenencia graduada de un elemento en un conjunto difuso. Función de Membresía Un elemento u de U. Puede no pertenecer a A: (A(u) = 0), Pertenecer un poco: (A(u) = con un valor cercano a 0), Pertenecer moderadamente: (A(u) = con un valor no muy cercano a 0 pero tampoco a 1), Pertenecer demasiado: (A(u) = con un valor muy cercano a 1), Pertenecer totalmente a: (A(u)=1). Debido a que el cambio de la función de membresía de un conjunto a otro es gradual en los conjuntos difusos, dichos conjuntos son agrupamientos de elementos en clases, también llamados etiquetas difusas, las cuales a diferencia de los conjuntos clásicos, no poseen fronteras bien definidas. ¿Cómo se determina la forma exacta de la función de membresía para un conjunto Una función de difuso?. membresía se puede diseñar en tres formas distintas: (1). Entrevistando a quienes están familiarizados con las conceptos importantes del sistema, y ajustándolos durante el proceso mediante una estrategia de sintonización (hasta los 80s). (2). Construyéndola directamente a partir de los datos (2 y 3, después de los 80s). (3). Mediante el aprendizaje basado en la retroalimentación de la ejecución del sistema. Se han desarrollado muchas técnicas para definir la forma de las funciones de membresía (FM) utilizando técnicas estadísticas, redes neuronales artificiales y algoritmos genéticos. Se debe de tener especial cuidado al diseñar las FMs. Aun que se puede definir una FM de forma arbitraria, se recomienda que se utilicen FM parametrizables que puedan ser definidas por un número pequeño de parámetros. FMs más utilizadas: Simplicidad µ µ 1 1 l p r Función de membresía triangular y sus parámetros. l p lp r r Función de membresía trapezoidal y sus parámetros. Estrategias especificas para seleccionar y ajustar las FMs se verán después. Nota: Las FMs que son diferenciables tienen ciertas ventajas en las aplicaciones de sistemas neurodifusos (sistemas que aprenden funciones de membresía utilizando técnicas de aprendizaje de RNA). Las funciones de membresía Gausianas han sido utilizadas para dichos sistemas. Resumen: diseño de FM Directrices: 1. Siempre utilice FM parametrizables. No defina una función de membresía punto por punto. 2. Utilice una FM triangular o trapezoidal, a menos que haya una buena razón para hacer lo contrario. 3. Si desea que el sistema aprenda la función de membresía utilice técnicas de aprendizaje de RNA, escoja una función de membresía diferenciable, como la Gaussiana. 2.1.2.2 Operaciones básicas en conjuntos difusos Para conjuntos clásicos se pueden realizar las siguientes definiciones: x X x pertenece a X x A x pertenece a A x X x no pertenece a A para los conjuntos A y B en X, también se tiene: A B A esta contenida en B si x A, entonces x B A B A esta contenida en o es equivalente a B A B A B y BA Algunas definiciones para conjuntos Contenimiento: ( ) Un conjunto puede contener a otro conjunto. Al conjunto más pequeño se le llama Subconjunto. ( Subconjunto propio). En un universo comprendido por tres elementos X = {a, b, c}, el número cardinal es nx = 3. Y su conjunto potencial es: P X , a , b , c , a, b , a, c , b, c , a, b, c Conjunto Difuso Si se considera el siguiente conjunto difuso finito: A = 0.2/u1, 0/ u2, 0.3/u3, 1/ u4, 0.8/u5. uU. UU Entonces un conjunto difusou A de será un conjunto de parejas: A = {u, A(u)}, Considerando que xi es un elemento del soporte del conjunto difuso A y que i es su grado de membresía en A. A = 1 / x1 + 2 / x2 +....+ n / xn. Donde. El símbolo / Se emplea para unir los elementos del soporte con sus grados de membresía en A, y. El símbolo + Indica que los pares de elementos y grados de membresía listados forman colectivamente la definición del conjunto A, en vez de cualquier tipo de suma algebraica. Conjunto difuso: universo de discurso finito y no-finito n x x x A 1 A 2 A i A x x x i 1 1 2 i A x A x U La integral y la sumatoria indican la unión de elementos dentro de un conjunto difuso A. Conjunto difuso Se entenderá que un conjunto difuso es finito siempre que al poder enumerar a sus elementos representativos este proceso termine, independientemente del valor de sus funciones de membresía. Operaciones Básicas De Los Conjuntos Clásicos Las tres operaciones básicas en conjuntos clásicos son: unión, intersección, y complemento. UNION A B x x A o x B INTERSECCIÓN A B x x A y x B COMPLEMENTO A x x A, x X DIFERENCIA A B x x A y x B El complemento de un conjunto se puede __ denotar por: AC , ¬A,A . Por ejemplo: Si A y B son dos conjuntos de “percepciones anuales por persona” definidos por: A x 100 K x 200 K , x U B x 50 K x 120 K , x U Donde U es el universo de discurso A Se B tiene x 100 K que: x 120 K , x U [0,1000K]. A B x 50 K x 200K , x U AC x 0 x 100K ó 200K x 1000K Operaciones Básicas De Los Conjuntos Difusos Debido a que la membresía en un conjunto difuso se mide en grados, las operaciones de conjuntos deberían generalizarse a los conjuntos difusos de forma acuerda (ilustrar). La operación de intersección difusa es matemáticamente equivalente a la operación de conjunción difusa (AND), debido a que tienen propiedades idénticas. De operaciones de conjuntos a operaciones lógicas Para explicar la relación entre operaciones de conjuntos y operaciones lógicas, primero se hará un repaso de operaciones básicas en la lógica clásica: Una declaración en lógica clásica solo tiene dos posibles valores: Falso o Verdadero. Dichas declaraciones lógicas pueden ser combinadas al utilizar conectivas lógicas tales como: AND (conjunción, denotada por л), OR (disyunción, denotada por v), NOT (negación, denotada por ¬), y IMPLY (implicación, denotada por → ). Tabla de valores de verdad: Conectivas Lógicas Clásicas p q ¬p p q p→q F F T F F T F T T F T T T F F F T F T T F T T T p q p y q son dos declaraciones lógicas (o proposiciones) Conectivas Lógicas Clásicas Una declaración conjuntiva compuesta pлq será verdadera si y solo si ambas p y q son verdaderas. Una declaración disyuntiva compuesta p v q será verdadera si y solo si cualquiera de las declaraciones es verdadera. La negación de una declaración es verdadera si y solo si la declaración original es falsa. Para lógica clásica: Si la proposición p representa la sentencia “x está en el conjunto A”: p es verdadera iff x ε A Y si la proposición q representa la sentencia “x está en el conjunto B”: q es verdadera iff x ε B Entonces, p y q son verdaderas cuando x está en la descripción de A y B: (pлq) es verdadera iff x ε AB Y que p ó q es verdadera cuando x está en la unión de A y B: (p v q) es verdadera iff x ε AB Finalmente, p es falsa cuando x está en el complemento de A: p es verdadera iff x ε Ac. Conclusión Por lo tanto, los operadores de intersección unión y complemento en la teoría de conjuntos son similares a la conjunción, disyunción y negación en lógica. Operaciones Lógicas Difusas Un operador común de conjunción (AND) difusa es el operador mínimo. Con frecuencia la intersección difusa se define como: AB (x)= min{A(x), B(x)} Intersección: En conjuntos difusos es el grado de membresía que dos conjuntos comparten. Una intersección difusa es el menor de la membresía de cada elemento en ambos conjuntos. Por ejemplo: Se puede definir un conjunto difuso A de los números reales muy cercanos a 8 y B como el conjunto difuso de los números reales muy cercanos a 15. Entonces, A B se definiría como el conjunto difuso de los números reales muy cercanos a 8 “y” a 15. Tomando en cuenta la ecuación: AB x A x B x min A x , B x y A = (1 0.8 0.4 0.5) y B = (0.9 0.4 0.0 0.7) se tiene que: AB(x) = (0.9 0.4 0.0 0.5). Representación de la Intersección de difusa ó conjunción difusa. BajaMedia 1 A B Temperatura Operaciones Lógicas Difusas Un operador común de disyunción difusa es el operador máximo. Por lo tanto, con frecuencia la unión difusa se define como: AB (x)= max{A(x), B(x)} La unión (o disyunción) difusa, se lee “o” difusa, y representa al conjunto difuso más pequeño que contiene a A y que contiene a B. El operador max (), toma como valor verdadero el valor máximo de la función de membresía del elemento x en A y B. Ejemplo: Se puede definir al conjunto difuso A de los números reales muy cercanos a 8 y B como el conjunto difuso de los números reales muy cercanos a 15. Tomando en cuenta la ecuación. AB x A x B x max A x , B x y que A = (1 0.8 0.4 0.5) y B = (0.9 0.4 0.0 0.7) se tiene que: AB(x) = (1 0.8 0.4 0.7). Representación de la Unión difusa ó disyunción difusa. BajaMedia 1 A B Temperatura Operaciones Lógicas Difusas El complemento de un conjunto difuso A se define por la diferencia entre uno y el grado de membresía en A: Ac (x)= 1- A (x) Complemento (negación difusa): El complemento de un conjunto difuso es la cantidad que la membresía necesita para alcanzar 1. Sea U un conjunto cualquiera y M = [0,1], su conjunto asociado de membresía. Si se considera a un conjunto difuso AU, entonces A u 1 A u , u U el complemento de A será: evidentemente, se cumple que: ¬ (¬A) = A Representación del complemento de un conjunto difuso ó negación difusa ¬Medio Medio 1 Temperatura 2.1.3 Variable Lingüística Como un conjunto convencional, un conjunto difuso se puede utilizar para describir el valor de una variable. Por ejemplo, la oración “El porcentaje de humedad es Bajo” utiliza el conjunto difuso “Bajo” para describir la cantidad de humedad en un día. Más formalmente, se expresa como: Humedad es Bajo La variable humedad en este ejemplo demuestra un concepto importante en la lógica difusa: La variable lingüística. … Una variable lingüística se puede interpretar tanto cualitativamente mediante un termino lingüístico (etiqueta: nombre del conjunto difuso), como cuantitativamente mediante su correspondiente función de membresía (la cual expresa el significado del conjunto difuso). El termino lingüístico es utilizado para expresar conceptos y conocimiento, mientras la función de membresía se utiliza para procesar el dato numérico de entrada. … Una variable lingüística es como una composición de una variable simbólica (una variable cuyo valor es un número). Un ejemplo de una variable simbólica es: Forma = Cilíndrica Donde Forma es una variable que indica la forma de un objeto. Un ejemplo de variable numérica es: Altura = 4’ … Con frecuencia, las variables numéricas son utilizadas en ingeniería, ciencias, matemáticas, medicina, y en muchas otras disciplinas. Por otro lado, las variables simbólicas juegan un papel importante en la inteligencia artificial y las ciencias que tienen que ver con toma de decisiones. … Utilizando la notación de la variable lingüística se pueden combinar estos dos tipos de variables dentro de una red uniforme, lo cual es de hecho una de las razones principales de que la lógica difusa haya tenido éxito en ofrecer una aproximación inteligente en la ingeniería y muchas otras áreas que tienen que ver con problemas que manejan un dominio continua. Modificadores Lingüísticos: Hedges Existen muchos descriptores lingüísticos como son: moderado, normal, alto, algo caliente, muy bajo, medio normal, mas o menos alto, etc. Uno de los conceptos importantes en la Lógica Difusa es que en vez de enumerar todos estos diferentes descriptores, se pueden generar de un conjunto esencial de términos lingüísticos (llamado: Conjunto Término) utilizando modificadores (por ejemplo: muy, mas o menos) y conectivas (por ejemplo: “y”, “o”). En Lógica Difusa a dichos modificadores se les denomina: Hedges Ejemplo: Variables Lingüísticas Y Valores Lingüísticos. Si edad es interpretada como una variable lingüística, entonces su conjunto término T(edad) puede ser: joven, no joven, muy joven, no muy joven, , medio viejo, no medio viejo, , T edad viejo , no viejo , muy viejo , mas o menos viejo , no muy viejo , , no muy joven y no muy viejo, Donde cada término en T(edad) se caracteriza por un conjunto difuso de un universo de discurso X = [0, 100], como se muestra en la siguiente figura. Del ejemplo anterior, se observa que el conjunto termino consiste de varios términos primarios (joven, viejo) modificados por la negación ("no") y/o los adverbios (muy, mas o menos, completamente, extremadamente, etc.), y entonces ligados por conectivas tales como y, o, y ni. Universo De Discurso Establecimiento Del Universo De Discurso Para Las Variables Lingüísticas Se especifica el universo de discurso para una variable de entrada y/o salida, cómo el rango de valores posibles que puede tomar la variable en cuestión para la aplicación actual. Dado que el universo de discurso para cada variable debe ser trasladado a variables lingüísticas (conjuntos difusos), se ha tratado de normalizar que el número de conjuntos difusos definido para cada variable sea un número impar, recomendando que se inicie especificando 7 conjuntos para cada variable. La determinación final del número de conjuntos difusos definidos para cada variable se determina heurísticamente, pues aún cuando se conocen los efectos de tener pocos o muchos conjuntos definidos en el universo, finalmente se establecen los conjuntos definitivos observando un funcionamiento satisfactorio del sistema. Se recomienda especificar una cantidad de conjuntos difusos más densa en aquellas zonas donde se requieran cambios grandes en los parámetros de salida del sistema a cambios pequeños de sus parámetros de entrada. Una de las cualidades que caracterizan a los sistemas difusos es el manejo de información ambigua, esta característica la adquieren debido a la forma en que se especifican los conjuntos difusos cubriendo el universo de discurso de las variables de entrada y/o salida, por lo que la ambigüedad que puede ser admitida por el sistema depende del grado de traslape entre los conjuntos definidos. Respecto del grado de traslape que deben tener dos conjuntos contiguos, se recomienda en 25% del área total al inicio del desarrollo (conjuntos simétricos), aún cuando se sabe que el funcionamiento del sistema no es muy bueno con estos conjuntos, también se recuerda que esto no es una generalización, pues su adecuación depende del grado de precisión deseado en la respuesta del sistema. Consideraciones para la especificación de los C D´s: 1) Cada punto en el universo de discurso debe pertenecer al dominio de al menos una función de membresía; al mismo tiempo, debe pertenecer al dominio de no más de dos funciones de membresía. 2) Ningún par de funciones de membresía deben tener el mismo punto de máxima membresía. Consideraciones para la especificación de los C D´s: 3) Cuando dos funciones de membresía se traslapan, la suma de los grados de membresía para cualquier punto en el traslape debe ser menor o igual a uno. 4) Cuando dos funciones de membresía se traslapan, el traslape no debe cruzar el punto de máxima membresía de cualquier función de membresía. Durante la especificación de los conjuntos difusos que cubren los extremos inferior (función Z) y superior (función S) del universo de discurso considerado, es de gran importancia que se hagan de una manera adecuada, ya que estas funciones son muy importantes para la estabilidad del funcionamiento del s...
View Full Document

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture