Exam 2 Review

Exam 2 Review - Exam 2 Review (Sections 7.8, 8.1, 8.2, 9.3,...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
Exam 2 Review (Sections 7.8, 8.1, 8.2, 9.3, 9.4, 10.1) 7.8 – Improper Integrals Two types Infinite Intervals Ex: Z @1 0 xe x dx = lim s Q @1 Z s 0 xe x dx Ex: Z @1 1 1 1 + x 2 ffffffffffffffffff dx = Z @1 0 1 1 + x 2 ffffffffffffffffff dx + Z 0 1 1 1 + x 2 ffffffffffffffffff dx Then take the limits of both integrals and solve Discontinuity within Bounds Ex: Z 2 5 1 x @ 2 p wwwwwwwwwwwwwwwwwwwwwwww fffffffffffffffffffffffff dx = lim t Q 2 + Z t 5 1 x @ 2 p wwwwwwwwwwwwwwwwwwwwwwww fffffffffffffffffffffffff dx Ex: Z 0 3 dx x @ 1 ffffffffffffffff = Z 0 1 dx x @ 1 ffffffffffffffff + Z 1 3 dx x @ 1 ffffffffffffffff Then take the limits of both integrals and solve Convergence/Divergence If the limits exist, it’s convergent . If any part of the integration yields a non-existent limit, it’s divergent . P-tests Z 1 1 1 x p fffffff dx [ if p > 1 then convergent , if p ≤ 1 then divergent . Z 0 1 1 x p fffffff dx [ if p < 1 then convergent , if p ≥ 1 then divergent . Comparison Test If f(x) is convergent, everything below is convergent. If f(x) is divergent, everything above is divergent.
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
8.1 – Arc-Length Straight-forward function: L = Z a b 1 + f . x ` a b c 2 s wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
Background image of page 2
Image of page 3
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 4

Exam 2 Review - Exam 2 Review (Sections 7.8, 8.1, 8.2, 9.3,...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online